Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kohlenstoff zeigt Quanteneffekte

07.07.2017

Chemiker der Ruhr-Universität Bochum haben einen neuen Beleg dafür gefunden, dass sich Kohlenstoffatome nicht nur wie Teilchen, sondern auch wie Wellen verhalten können. Diese quantenmechanische Eigenschaft ist für leichte Teilchen wie Elektronen oder Wasserstoffatome hinreichend bekannt. Nur selten haben Forscher hingegen den Welle-Teilchen-Dualismus für schwere Atome wie Kohlenstoff beobachtet. Das Team um Prof. Dr. Wolfram Sander und Tim Schleif vom Lehrstuhl für Organische Chemie II berichtet gemeinsam mit Prof. Dr. Weston Thatcher Borden, University of North Texas, in der Zeitschrift Angewandte Chemie.

„Unser Ergebnis ist eines von wenigen Beispielen dafür, dass Kohlenstoffatome Quanteneffekte zeigen können“, sagt Sander. Konkret beobachteten die Forscher, dass Kohlenstoffatome tunneln können. Sie überwinden also eine energetische Barriere, obwohl sie eigentlich nicht genug Energie besitzen, um das zu tun.


Sie waren maßgeblich daran beteiligt, das ungewöhnliche Verhalten des Kohlenstoffs nachzuweisen: Tim Schleif (links) und Joel Mieres Perez (rechts)

© RUB, Marquard

Selten beobachtet für schwere Teilchen

Wolfram Sander veranschaulicht das Paradoxon: „Es ist, als würde ein Tiger seinen Käfig verlassen, ohne über den Zaun zu springen, der viel zu hoch für ihn ist. Er kommt aber trotzdem raus.“ Das kann nur gelingen, wenn er sich wie eine Welle verhält, aber nicht, wenn er sich wie ein Teilchen verhält. Die Wahrscheinlichkeit, mit der ein Objekt in der Lage ist zu tunneln, hängt von seiner Masse ab. Daher kann das Phänomen zum Beispiel für die leichten Elektronen deutlich einfacher beobachtet werden als für das relativ schwere Kohlenstoffatom.

Die Forscher untersuchten die Tunnelreaktion anhand der Cope-Umlagerung, einer seit fast 80 Jahren bekannten chemischen Reaktion. Das Ausgangsmolekül für die Reaktion, eine Kohlenwasserstoffverbindung, ist dabei identisch mit dem Produktmolekül. Vor und nach der Reaktion liegt also die gleiche chemische Verbindung vor. Allerdings verknüpfen sich die Kohlenstoffatome in dem Prozess neu; die Bindungen in dem Molekül verlagern sich also.

In ihrem Experiment markierten die Bochumer ein Kohlenstoffatom des Ausgangsmoleküls: Sie ersetzten eines der daran gebundenen Wasserstoffatome durch das Wasserstoffisotop Deuterium, eine schwerere Variante des Wasserstoffs. Moleküle vor und nach der Cope-Umlagerung unterschieden sich in der Verteilung des Deuteriums. Aufgrund dieser unterschiedlichen Verteilungen besaßen die beiden Molekülformen leicht unterschiedliche Energien.

Reaktion dürfte eigentlich nicht stattfinden

Bei Raumtemperatur wirkt sich dieser Unterschied nicht aus; aufgrund der in der Umgebung reichlich vorhandenen Wärmeenergie liegen beide Formen gleich häufig vor. Bei sehr tiefen Temperaturen unter zehn Kelvin wird allerdings eine Molekülform aufgrund des Energieunterschieds stark bevorzugt. Beim Übergang von Raumtemperatur zu extrem tiefen Temperaturen müsste sich das Gleichgewicht von einer gleichhäufigen Verteilung der beiden Formen zu einer ungleichen Verteilung verschieben.

Diese Verschiebung kann aber unmöglich auf klassischem Weg stattfinden – denn für die Umlagerung von einer in die andere Form müsste eine Energiebarriere überwunden werden, wofür weder das Molekül selbst die Energie besitzt noch die kalte Umgebung diese liefern kann. Obwohl sich das neue Gleichgewicht auf klassischem Wege nicht einstellen dürfte, konnten die Forscher es trotzdem im Experiment nachweisen. Ihr Fazit: Die Cope-Umlagerung bei extrem tiefen Temperaturen lässt sich nur durch einen Tunneleffekt erklären. Damit lieferten sie experimentelle Belege für eine Voraussage, die Weston Borden vor mehr als fünf Jahren aufgrund theoretischer Studien getätigt hatte.

Lösungsmittel beeinflussen Fähigkeit zu tunneln

An der Ruhr-Universität forscht Wolfram Sander im Exzellenzcluster Ruhr Explores Solvation und beschäftigt sich dort mit den Wechselwirkungen von Lösungsmitteln und gelösten Molekülen. „Es ist bekannt, dass Lösungsmittel die Fähigkeit zu tunneln beeinflussen“, sagt der Chemiker. „Aber es ist bislang völlig unverstanden, wie sie das tun.“

Förderung

Die Deutsche Forschungsgemeinschaft unterstütze die Arbeiten im Rahmen des Exzellenzclusters Ruhr Explores Solvation (EXC 1069), der an der Ruhr-Universität Bochum angesiedelt ist. Weitere finanzielle Mittel für die University of North Texas kamen von der Robert A. Welch Foundation (Grant B0027).

Originalveröffentlichung

Tim Schleif, Joel Mieres-Perez, Stefan Henkel, Melanie Ertelt, Weston Thatcher Borden, Wolfram Sander: The Cope rearrangement of 1,5-Dimethylsemibullvalene-2(4)-d1: Experimental evidence for heavy-atom tunneling, in: Angewandte Chemie, 2017, DOI: 10.1002/ange.201704787, International Edition: 10.1002/anie.201704787

Pressekontakt

Prof. Dr. Wolfram Sander
Lehrstuhl für Organische Chemie II
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: 0234 32 24593
E-Mail: oc2@rub.de


Exzellenzcluster Resolv
https://www.solvation.de/

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Revolution im Bienenstock: Forscher entdecken Gen, das Bienen zu Sozialparasiten werden lässt
21.01.2019 | Martin-Luther-Universität Halle-Wittenberg

nachricht Wie viel Regenwald brauchen Vögel? Göttinger Forscherteam beschreibt Schwellenwerte für Waldanteile
21.01.2019 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klassisches Doppelspalt-Experiment in neuem Licht

Internationale Forschergruppe entwickelt neue Röntgenspektroskopie-Methode basierend auf dem klassischen Doppelspalt-Experiment, um neue Erkenntnisse über die physikalischen Eigenschaften von Festkörpern zu gewinnen.

Einem internationalen Forscherteam unter Führung von Physikern des Sonderforschungsbereichs 1238 der Universität zu Köln ist es gelungen, eine neue Variante...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedankenexperiment mithilfe eines verschränkten Atom-Licht-Zustands.

Bereits 1935 formulierte Erwin Schrödinger die paradoxen Eigenschaften der Quantenphysik in einem Gedankenexperiment über eine Katze, die gleichzeitig tot und...

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Smarte Sensorik für Mobilität und Produktion 4.0 am 07. Februar 2019 in Oldenburg

18.01.2019 | Veranstaltungen

16. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

17.01.2019 | Veranstaltungen

Erstmalig in Nürnberg: Tagung „HR-Trends 2019“

17.01.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neues Material soll Grenzen der Silicium-Elektronik überwinden

21.01.2019 | Energie und Elektrotechnik

water meets....Future - Abwasser nachhaltig nutzen

21.01.2019 | Ökologie Umwelt- Naturschutz

Inbetriebnahme eines 3D-Bewegungssimulators am "kunststoffcampus bayern“ in Weißenburg

21.01.2019 | Verkehr Logistik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics