Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kohlenstoff-Nanoröhren - Photostrom in höchster Auflösung

08.06.2012
Die zunehmende Miniaturisierung in der Elektronik erfordert neue Materialien. Vielversprechende Kandidaten sind Bauteile aus Kohlenstoff-Nanoröhren, die nun erstmals mit der erforderlichen räumlichen Auflösung optoelektronisch charakterisiert wurden.
Die bisher gängige Silizium-basierte Technologie wird bei der fortschreitenden Miniaturisierung in der Elektronik bald an fundamentale physikalisch - technische Grenzen stoßen. Filigrane Hohlzylinder aus Kohlenstoff-Atomen - sogenannte Kohlenstoff-Nanoröhren - haben großes Potenzial, diese Limitierung zu überwinden. Einzelne Kohlenstoff-Nanoröhren könnten in einem Bauteil beispielsweise als Transistor, Lichtabsorber und Licht-Emitter funktionieren.

Die winzigen Kohlenstoffröhren sind nur etwa einen Nanometer dünn. Die Charakterisierung ihrer optischen und elektrischen Eigenschaften sollte daher idealerweise in derselben Größenskala stattfinden. Mithilfe einer sogenannten optischen Antenne - einer laserbeleuchteten scharfen Goldspitze - konnte LMU-Professor Achim Hartschuh mit seinem Team nun erstmals elektrische und optische Signale der Nanoröhren auf der Nanoskala gleichzeitig erfassen. Bisher angewandte konventionelle konfokale Techniken bieten nicht die erforderliche räumliche Auflösung.
Bauteile aus einzelnen Nanoröhren vermessen

Die optische Antenne dagegen verstärkt die Signale einzelner Nanostrukturen und erlaubt Einblicke in höchster Auflösung: "In unserer Arbeit zeigen wir erstmals Photostromdaten mit einer Auflösung von weniger als 30 Nanometer, die an einzelnen Kohlenstoff-Nanoröhren aufgenommen wurden", sagt Hartschuh. Die Methode der sogenannten Spitzen-verstärkten optischen Nahfeldmikroskopie wurde von Hartschuhs Team bereits in der Vergangenheit vielfältig eingesetzt und nun weiterentwickelt.
Die räumliche Auflösung des Photostromsignals entspricht dabei recht genau dem theoretisch Erwarteten. "Neben den hier gezeigten Kohlenstoffnanoröhren könnte unsere Methode beispielsweise auf anorganische Halbleiternanodrähte und möglicherweise auch auf Solarzellen sowie darin verwendete Materialien angewandt werden", verweist Hartschuh, der auch dem „Center for NanoScience“ (CeNS) der LMU sowie dem Exzellenzcluster „Nanosystems Initiative Munich“ (NIM) angehört, auf weitere Einsatzmöglichkeiten.(göd)

Publikation:
Antenna-Enhanced Photocurrent Microscopy on Single-Walled Carbon Nanotubes at 30 nm Resolution
Nina Rauhut, Michael Engel, Mathias Steiner, Ralph Krupke, Phaedon Avouris, and Achim Hartschuh
ACS Nano, Article ASAP
DOI: 10.1021/nn301979c

Kontakt:
Prof. Dr. Achim Hartschuh
Department Chemie und CeNS
Tel.: 089/2180-77515
Fax: 089/2180-77188
E-Mail: achim.hartschuh@cup.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.cup.uni-muenchen.de/pc/hartschuh/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics