Kohlenstoff-Nanoröhren – Photostrom in höchster Auflösung

Die bisher gängige Silizium-basierte Technologie wird bei der fortschreitenden Miniaturisierung in der Elektronik bald an fundamentale physikalisch – technische Grenzen stoßen. Filigrane Hohlzylinder aus Kohlenstoff-Atomen – sogenannte Kohlenstoff-Nanoröhren – haben großes Potenzial, diese Limitierung zu überwinden. Einzelne Kohlenstoff-Nanoröhren könnten in einem Bauteil beispielsweise als Transistor, Lichtabsorber und Licht-Emitter funktionieren.

Die winzigen Kohlenstoffröhren sind nur etwa einen Nanometer dünn. Die Charakterisierung ihrer optischen und elektrischen Eigenschaften sollte daher idealerweise in derselben Größenskala stattfinden. Mithilfe einer sogenannten optischen Antenne – einer laserbeleuchteten scharfen Goldspitze – konnte LMU-Professor Achim Hartschuh mit seinem Team nun erstmals elektrische und optische Signale der Nanoröhren auf der Nanoskala gleichzeitig erfassen. Bisher angewandte konventionelle konfokale Techniken bieten nicht die erforderliche räumliche Auflösung.
Bauteile aus einzelnen Nanoröhren vermessen

Die optische Antenne dagegen verstärkt die Signale einzelner Nanostrukturen und erlaubt Einblicke in höchster Auflösung: „In unserer Arbeit zeigen wir erstmals Photostromdaten mit einer Auflösung von weniger als 30 Nanometer, die an einzelnen Kohlenstoff-Nanoröhren aufgenommen wurden“, sagt Hartschuh. Die Methode der sogenannten Spitzen-verstärkten optischen Nahfeldmikroskopie wurde von Hartschuhs Team bereits in der Vergangenheit vielfältig eingesetzt und nun weiterentwickelt.
Die räumliche Auflösung des Photostromsignals entspricht dabei recht genau dem theoretisch Erwarteten. „Neben den hier gezeigten Kohlenstoffnanoröhren könnte unsere Methode beispielsweise auf anorganische Halbleiternanodrähte und möglicherweise auch auf Solarzellen sowie darin verwendete Materialien angewandt werden“, verweist Hartschuh, der auch dem „Center for NanoScience“ (CeNS) der LMU sowie dem Exzellenzcluster „Nanosystems Initiative Munich“ (NIM) angehört, auf weitere Einsatzmöglichkeiten.(göd)

Publikation:
Antenna-Enhanced Photocurrent Microscopy on Single-Walled Carbon Nanotubes at 30 nm Resolution
Nina Rauhut, Michael Engel, Mathias Steiner, Ralph Krupke, Phaedon Avouris, and Achim Hartschuh
ACS Nano, Article ASAP
DOI: 10.1021/nn301979c

Kontakt:
Prof. Dr. Achim Hartschuh
Department Chemie und CeNS
Tel.: 089/2180-77515
Fax: 089/2180-77188
E-Mail: achim.hartschuh@cup.uni-muenchen.de

Media Contact

Luise Dirscherl idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer