Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

Schlickgras im Wellenkanal UHH/MIN/Latos

Pflanzen der Salzmarschen wie das Schlickgras und die Strandsimse schützen Küsten vor der stürmischen See und dämpfen die heranrollenden Wellen. Doch was passiert mit der Vegetation, wenn im Zuge des Klimawandels Sturmfluten häufiger auftreten oder stärker werden?

Und wie wirkt sich dies auf die Erosion der Küsten aus? Diesen Fragen geht derzeit ein internationales Forscherteam in einem einzigartigen Experiment im Großen Wellenkanal des Forschungszentrums Küste (FZK), einer gemeinsamen Einrichtung der Leibniz Universität Hannover und der Technischen Universität Braunschweig, nach. Die Ergebnisse können zeigen, welche Folgen die Veränderungen des Klimas auf die wertvolle Küstenschutzfunktion der Tidemarschen haben.

Salzmarschen entstehen an flachen, von Gezeiten beeinflussten Küsten. Sie bieten Lebensraum für besonders angepasste Pflanzen und Tiere, schützen das Ufer und tragen zum Klimaschutz bei, da sie Kohlenstoffdioxid aus der Atmosphäre speichern. Doch wenn Sturmfluten im Zuge des Klimawandels häufiger auftreten oder stärker werden, könnte das System aus dem Gleichgewicht geraten und seine Schutzfunktion für die Küsten verlieren.

Bis jetzt können Wissenschaftlerinnen und Wissenschaftler noch nicht vorhersagen, wie widerstandsfähig die Tidemarschen gegenüber häufigeren und stärkeren Überschwemmungen sind und welche Sturmfluten sie sogar zerstören können. Ein Grund dafür ist, dass Salzwiesen deutlich komplexere Gebilde als Dünen und Sandstrände sind: Sie enthalten zum Beispiel große Mengen Schlick und Lehm, die den Boden „klebrig“ machen. Zudem ist ihr schützender Pflanzenbewuchs unterschiedlich stark ausgeprägt.

Im Hydralab+ Projekt RESIST (Response of Ecologically-mediated Shallow Intertidal Shores and their Transitions to extreme hydrodynamic forcing) wird sich das internationale Team genau diesem Thema widmen und untersuchen, wie sich starker Wellengang auf Setzlinge und erwachsene Pflanzen verschiedener Arten auswirkt und welchen Effekt die Bodenzusammensetzung auf die Erosion der Küsten hat. Für ihr Experiment setzen die Wissenschaftlerinnen und Wissenschaftler verschiedene Pflanzenarten der Salzwiesen und Sedimentproben drei Wochen lang im Großen Wellenkanal in Hannover großen Wellen und Sturmfluten aus.

Die Pflanzen, unter anderem das Schlickgras und die Strandsimse, haben die Wissenschaftlerinnen und Wissenschaftler im März 2018 in den Niederlanden gesammelt, in Holzkästen gepflanzt und diese in fünf verschiedenen Zonen am Boden des Wellenkanals verankert. In einer Zone untersucht das Team zum Beispiel die Auswirkungen von Sturmfluten in den Sommer- und Wintermonaten.

Hierzu wurde ein Teil der Pflanzen trockengelegt, um durch die Dürre das langsame Absterben der Pflanzen zu simulieren. In einer weiteren Zone erproben die Wissenschaftlerinnen und Wissenschaftler einen neuartigen Erosionsschutz aus Kartoffelstärke. Das Gitter wird direkt auf dem Boden in den Boxen angebracht und soll die jungen Pflanzen und das Sediment gegen die Wellen schützen.

Die 18-Sediment-Bohrkerne, die in dem Experiment ebenfalls den Wellen ausgesetzt werden, stammen von der schlammigen Ostküste sowie der sandigen Westküste Großbritanniens und wurden im Juli vom RESIST-Team gewonnen. Ihre Struktur und Beschaffenheit haben Wissenschaftlerinnen und Wissenschaftler in Cambridge im Micro-Computertomographen untersucht.

Die Bohrkerne werden an der Seite geöffnet und am Ende des großen Wellenkanals in eine Haltevorrichtung gespannt. Hier trifft sie dann die Wucht der Wellen, und die Erosion kann nach jedem Wellenlauf genau verfolgt werden.
An dem Projekt sind neben der federführenden University of Cambridge (UK) die Universität Hamburg, die Technische Universität Braunschweig, die Universität Antwerpen (Belgien) und das Royal Netherlands Institute for Sea Research beteiligt.

Der Große Wellenkanal des Forschungszentrum Küste

Der Große Wellenkanal im Forschungszentrum Küste (FZK), einer gemeinsamen Einrichtung der Leibniz Universität Hannover und der Technischen Universität Braunschweig, ist mit einer Breite von 5 Metern, einer Tiefe von 7 Metern und einer nutzbaren Länge von 307 Metern einer der größten frei zugänglichen Wellenkanäle der Welt. Die hydraulisch angetriebene Wellenmaschine kann regelmäßige Wellen und Seegang unter Tief- und Flachwasser-Bedingungen simulieren. Darüber hinaus lassen sich regelmäßige Wellen mit Höhen bis zu 2 Metern und Wellenspektren mit signifikanten Wellenhöhen bis etwa 1,30 Metern erzeugen.

Ansprechpartnerinnen und Ansprechpartner (Interviewkontakt kann gerne vermittelt werden)

– Dr. Iris Möller, University of Cambridge, Coastal Research Unit
– Dipl.-Ing. Matthias Kudella, Leibniz Universität Hannover, Forschungszentrum Küste
– Dr. Stefanie Nolte, Universität Hamburg, Angewandte Pflanzenökologie
– Dr. Maike Paul, Technische Universität Braunschweig, Institut für Geoökologie

Hinweis an die Redaktion:
Für weitere Informationen steht Ihnen Maria Latos, Fakultät für Mathematik, Informatik und Naturwissenschaften der Universität Hamburg, unter Telefon 040 42838 8109 oder per E-Mail unter maria.latos@uni-hamburg.de gern zur Verfügung. Fotomaterial kann ebenfalls gerne zugeschickt werden.

Media Contact

Mechtild Freiin v. Münchhausen idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-hannover.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

KI-basierte Software in der Mammographie

Eine neue Software unterstützt Medizinerinnen und Mediziner, Brustkrebs im frühen Stadium zu entdecken. // Die KI-basierte Mammographie steht allen Patientinnen zur Verfügung und erhöht ihre Überlebenschance. Am Universitätsklinikum Carl Gustav…

Mit integriertem Licht zu den Computern der Zukunft

Während Computerchips Jahr für Jahr kleiner und schneller werden, bleibt bisher eine Herausforderung ungelöst: Das Zusammenbringen von Elektronik und Photonik auf einem einzigen Chip. Zwar gibt es Bauteile wie MikroLEDs…

Antibiotika: Gleicher Angriffspunkt – unterschiedliche Wirkung

Neue antimikrobielle Strategien sind dringend erforderlich, um Krankheitserreger einzudämmen. Das gilt insbesondere für Gram-negative Bakterien, die durch eine dicke zweite Membran vor dem Angriff von Antibiotika geschützt sind. Mikrobiologinnen und…

Partner & Förderer