Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kleine Teilchen mit leuchtender Zukunft: EU fördert Projekt „LUMINET“ mit 3,6 Millionen Euro

12.03.2013
Neuartige lumineszierende Materialien sollen weltweiten Energiebedarf reduzieren

Leuchtstoffe bilden die Grundlage zahlreicher Anwendungen in unserem täglichen Leben. Sie weiterzuentwickeln, ist Ziel des Projekts „LUMINET“, das die EU im 7. Rahmenprogramm (FP7) mit 3,6 Millionen Euro über vier Jahre fördert.


Im Labor von Prof. Anja-Verena Mudring stellen Wissenschaftler neuartige lumineszierende Materialien her. Foto: Marion Nelle

Ein Netzwerk aus 12 Forschungseinrichtungen und Firmen bildet zu diesem Zweck talentierte junge Menschen zu der nächsten Generation führender Experten in diesem Feld aus. Prof. Dr. Anja-Verena Mudring vom Lehrstuhl für Anorganische Chemie 3.0 der Ruhr-Universität koordiniert das Netzwerk.

Lumineszierende Materialien sind Schlüsseltechnologie der nächsten Generation

Die Europäische Kommission benannte lumineszierende Materialien als eine Schlüsseltechnologie der nächsten Generation. Leuchtstoffe kommen zum Beispiel in Ampeln, Computerbildschirmen, Smartphones und Tablets, Euro-Banknoten, medizinische Geräten sowie in Filmen für Röntgenaufnahmen und in Leuchtmitteln vor. „Weltweit verbraucht alleine die Beleuchtung einen großen Teil der elektrischen Energie, etwa 20 Prozent“, sagt Anja-Verena Mudring.

„Es könnten bis zu 50 Kernkraftwerke ersatzlos vom Netz genommen werden, wenn alle Glühlampen durch effiziente Energiesparlampen oder LEDs ausgetauscht würden – wie bereits in der EU, in Australien und weiteren Ländern eingeleitet wurde.“ Forscher und Politiker gehen davon aus, die wirtschaftliche und soziale Bedeutung von lumineszierenden Materialien werde weiter an Bedeutung gewinnen. Dabei spielen Ressourcenmanagement und Umweltverträglichkeit eine entscheidende Rolle.

Den Bedarf an Seltenen Erden minimieren

Viele Leuchtstoffe basieren auf Seltenen Erden, wie etwa Europium oder Terbium. Seit China die Ausfuhr der Seltenen Erden limitiert hat, sind die Preise für diese wertvollen Rohstoffe stark gestiegen. Daher ist die Suche nach Leuchtstoffen, die mit weniger oder sogar gänzlich ohne Seltene Erden auskommen, ein wichtiges Forschungsthema. Prof. Mudring verwendet ionische Flüssigkeiten, um neuartige Leuchtstoffe herzustellen. Ihr Team produziert kleinste Teilchen von lumineszierenden Materialien und testet sie auf neue Eigenschaften und ihre Anwendbarkeit in Leuchtmitteln und Solarzellen. „Mit ionischen Flüssigkeiten können wir die Struktur von Nanopartikeln gezielt verändern und eine bislang unterreichte Energieeffizienz realisieren“, sagt die Chemikerin. „Es steckt noch viel Potenzial in den kleinen Teilchen, und wir sind zuversichtlich, bald anwendungsreife Materialien vorstellen zu können.“

Kooperationspartner

„LUMINET“ bringt die Expertise von zehn akademischen und zwei industriellen Partnern aus zehn EU- Ländern zusammen. Die akademischen Projektpartner von Prof. Mudrings RUB-Team sind Forscher aus Aveiro, Bern, Orléans, Prag, Tartu, Utrecht, Verona und Breslau. Außerdem konnten Philips Research und die Osram GmbH als industrielle Partner gewonnen werden.

Weitere Informationen

Prof. Dr. Anja-Verena Mudring, Lehrstuhl für Anorganische Chemie 3.0, Fakultät für Chemie und Biochemie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-27408, E-Mail: anja.mudring@rub.de

Angeklickt

Anorganische Chemie 3.0 (englische Seite)
http://www.anjamudring.de/
Redaktion: Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.anjamudring.de/
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nonstop-Transport von Frachten in Nanomaschinen
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Wie sich ein Kristall in Wasser löst
20.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop-Transport von Frachten in Nanomaschinen

Max-Planck-Forscher entdecken die Nanostruktur von molekularen Zügen und den Grund für reibungslosen Transport in den „Antennen der Zelle“

Eine Zelle bewegt sich ständig umher, tastet ihre Umgebung ab und sendet Signale an andere Zellen. Das ist wichtig, damit eine Zelle richtig funktionieren kann.

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Für eine neue Generation organischer Leuchtdioden: Uni Bayreuth koordiniert EU-Forschungsnetzwerk

20.11.2018 | Förderungen Preise

Nonstop-Transport von Frachten in Nanomaschinen

20.11.2018 | Biowissenschaften Chemie

Wie sich ein Kristall in Wasser löst

20.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics