Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Klein und effizient - Wasser-Nanotröpfchen kühlen Biomoleküle ultraschnell

29.11.2012
Forscher des Max-Born-Instituts in Berlin haben beobachtet, wie Biomoleküle innerhalb von 1 ps thermische Energie in kleinste Wassertropfen in ihrer Umgebung übertragen. Hierfür ist eine aus nur 3 Wassermolekülen bestehende Hülle um ein Phospholipidmolekül ausreichend.

Biochemische Prozesse laufen überwiegend in wässriger Umgebung ab. Dabei werden bestimmte Gruppen eines Biomoleküls in eine Hülle aus Wassermolekülen eingebettet, d.h. hydratisiert. Die Wasserhülle stabilisiert die biomolekulare Struktur und ermöglicht den Energieaustausch zwischen Biomolekül und Umgebung.


Links oben: Schematische Darstellung einer aus Phospholipidmolekülen bestehenden inversen Mizelle. Die Phosphatgruppen der Lipidmoleküle (blaue Kugeln) sind an der inneren Oberfläche der Mizelle angeordnet. Wassermoleküle befinden sich im Innern der Mizelle. Rechts oben: Vergrößerte Ansicht der Struktur eines Phospholipidmoleküls. Sauerstoffatome sind in rot, Wasserstoffatome in weiß, Kohlenstoffatome in grau, das Stickstoffatom in blau und das Phosphoratom in orange dargestellt. Die gewinkelten Wassermoleküle befinden sich in der Umgebung der Phosphatgruppe (PO4). Unten: Schema der Energieübertragung. In den Experimenten ist zunächst die (asymmetrische) Streckschwingung der Phosphatgruppe angeregt (rote Sauerstoffatome O). Nach dem Zerfall der Schwingungsanregung wird die freiwerdende Energie innerhalb einer Pikosekunde auf die umgebende Wasserhülle übertragen (rote Wassermoleküle H2O). Abb. MBI


Zweidimensionale Infrarotspektren der OH-Streckschwingung einer Wasserhülle, die aus 3 Wassermolekülen pro Phosphatgruppe besteht. Das linke Bild zeigt das Spektrum angeregter OH Streckschwingungen der Wasserhülle zum Zeitpunkt 0.125 ps. Das Signal ist als gelb-rote Kontur in Abhängigkeit von der Anregungs- und der Detektionsfrequenz gezeigt. Das rechte Spektrum wurde nach 1.5 ps aufgenommen und zeigt das charakteristische Signal einer aufgeheizten Wasserhülle. Der zusätzliche Beitrag bei großen Detektionsfrequenzen (blaue Kontur) ist auf die Schwächung der Wechselwirkung zwischen Wassermolekülen in der aufgeheizten Hülle zurückzuführen. Abb. MBI

Beispiele für derartige Systeme sind die DNS-Doppelhelix, der Träger genetischer Information, in wässriger Umgebung, und die aus Phospholipiden bestehende äußere Membran lebender Zellen. Die molekularen Mechanismen, die Geschwindigkeit und Effizienz des Energieaustausches zwischen Biomolekül und Wasserhülle bestimmen, sind erst in Ansätzen verstanden und deshalb Gegenstand aktueller Forschung.

Forscher des Max-Born-Instituts haben jetzt gezeigt, dass kleinste Wasser-"Tröpfchen" in der Umgebung eines Lipidmoleküls einen Energietransfer im Zeitbereich unterhalb 1 ps, d.h. in weniger als 1 Millionstel einer Millionstel Sekunde ermöglichen. Wie René Costard, Christian Greve, Ismael Heisler und Thomas Elsässer in der neuesten Ausgabe der Zeitschrift Journal of Physical Chemistry Letters (Band 3, Seite 3646, 2012) berichten, reichen 3 an die Phosphatgruppe des Lipids gekoppelte Wassermoleküle aus, um Schwingungsenergie aus dem Lipid effizient zu übertragen und in thermische Energie der Wasserhülle zu verwandeln.

Dabei wird die Wasserhülle um 10 bis 20 °C erwärmt. Die thermische Energie steckt vorwiegend in Kippbewegungen der Wassermoleküle, sog. Librationen, und führt zu einer Schwächung der Wechselwirkung zwischen den Wassermolekülen, den sog. Wasserstoffbrücken. Die molekulare Struktur der Wasserhülle bleibt auf der Zeitskala der Energieübertragung nahezu unverändert. Dieser extrem effiziente Mechanismus erlaubt auch die Übertragung größerer Energiemengen und kann so das Lipidmolekül vor Beschädigungen seiner Struktur durch Überhitzung schützen.

In den Experimenten wurde ein Phospholipid-Modellsystem untersucht, das aus DOPC-Molekülen besteht (Abb.1). Diese Moleküle sind als sog. inverse Mizellen angeordnet, in deren Innern die Phosphatgruppen (PO4) der Lipidmoleküle hydratisiert werden. Dabei lässt sich der Wassergehalt in weiten Grenzen verändern. Zur Untersuchung des Energietransfers wurde mit Lichtimpulsen von ca 0.1 ps Dauer entweder eine Phosphatschwingung des Lipids oder die OH-Streckschwingung von Wassermolekülen angeregt.

Beide Schwingungen zerfallen in Bruchteilen einer Pikosekunde und geben die dabei freiwerdende Energie an die Wasserhülle ab. Dieser Übertragungs- und Umverteilungprozess wurde durch Messung transienter zweidimensionaler Schwingungsspektren der OH-Streckschwingung des Wassers verfolgt (Abb. 2). Die Schwächung der Wasserstoffbrücken in der aufgeheizten Wasserhülle führt zu einer Verschiebung der OH-Streckschwingung zu höheren Frequenzen. Aus der zeitabhängigen Veränderung dieser Spektren lässt sich direkt die Dynamik der Energieübertragung ableiten.

Ansprechpartner:
René Costard, costard@mbi-berlin.de, Tel. 030 6392 1454
Dr. Ismael Heisler, heisler@mbi-berlin.de
Prof. Thomas Elsässer, elsasser@mbi-berlin.de
Originalpublikation:
R. Costard, C. Greve, I. A. Heisler, T. Elsaesser: Ultrafast energy redistribution in local hydration shells of phospholipids: a two-dimensional infrared study. J. Phys. Chem. Lett. 3, 3646 (2012).

Gesine Wiemer | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.mbi-berlin.de/
http://www.fv-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Lichtgetriebene Nanomotoren - Erfolgreich gekoppelt
28.01.2020 | Ludwig-Maximilians-Universität München

nachricht Warum Gesunde für Kranke so wichtig sind! – Vergleichsstudie geht Fibromyalgie-Syndrom auf den Grund
28.01.2020 | LWL-Universitätsklinikum Bochum der Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnellster hochpräziser 3D-Drucker

3D-Drucker, die im Millimeterbereich und größer drucken, finden derzeit Eingang in die unterschiedlichsten industriellen Produktionsprozesse. Viele Anwendungen benötigen jedoch einen präzisen Druck im Mikrometermaßstab und eine deutlich höhere Druckgeschwindigkeit. Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) haben ein System entwickelt, mit dem sich in bisher noch nicht erreichter Geschwindigkeit hochpräzise, zentimetergroße Objekte mit submikrometergroßen Details drucken lassen. Dieses System präsentieren sie in einem Sonderband der Zeitschrift Advanced Functional Materials. (DOI: 10.1002/adfm.201907795).

Um nicht nur die Geschwindigkeit, sondern auch die Zuverlässigkeit ihres Aufbaus zu demonstrieren, haben die Forscherinnen und Forscher eine 60 Kubikmillimeter...

Im Focus: Wie man ein Bild von einem Lichtpuls macht

Um die Form von Lichtpulsen zu messen, brauchte man bisher komplizierte Messanlagen. Ein Team von MPI Garching, LMU München und TU Wien schafft das nun viel einfacher.

Mit modernen Lasern lassen sich heute extrem kurze Lichtpulse erzeugen, mit denen man dann Materialien untersuchen oder sogar medizinische Diagnosen erstellen...

Im Focus: Ein ultraschnelles Mikroskop für die Quantenwelt

Was in winzigen elektronischen Bauteilen oder in Molekülen geschieht, lässt sich nun auf einige 100 Attosekunden und ein Atom genau filmen

Wie Bauteile für künftige Computer arbeiten, lässt sich jetzt gewissermaßen in HD-Qualität filmen. Manish Garg und Klaus Kern, die am Max-Planck-Institut für...

Im Focus: Integrierte Mikrochips für elektronische Haut

Forscher aus Dresden und Osaka präsentieren das erste vollintegrierte Bauelement aus Magnetsensoren und organischer Elektronik und schaffen eine wichtige Voraussetzung für die Entwicklung von elektronischer Haut.

Die menschliche Haut ist faszinierend und hat viele Funktionen. Eine davon ist der Tastsinn, bei dem vielfältige Informationen aus der Umgebung verarbeitet...

Im Focus: Dresdner Forscher entdecken Mechanismus bei aggressivem Krebs

Enzym blockiert Wächterfunktion gegen unkontrollierte Zellteilung

Wissenschaftler des Universitätsklinikums Carl Gustav Carus Dresden im Nationalen Centrum für Tumorerkrankungen Dresden (NCT/UCC) haben gemeinsam mit einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

HDT-Tagung: Sensortechnologien im Automobil

24.01.2020 | Veranstaltungen

Tagung befasst sich mit der Zukunft der Mobilität

22.01.2020 | Veranstaltungen

ENERGIE – Wende. Wandel. Wissen.

22.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lichtgetriebene Nanomotoren - Erfolgreich gekoppelt

28.01.2020 | Biowissenschaften Chemie

Warum Gesunde für Kranke so wichtig sind! – Vergleichsstudie geht Fibromyalgie-Syndrom auf den Grund

28.01.2020 | Biowissenschaften Chemie

Kiss and Run: Wie Zellen ihre Bestandteile trennen und recyceln

28.01.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics