Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kläranlage mit Düsenantrieb

19.12.2013
Schwimmende Mikromotoren aus Platin und Eisen befreien Wasser mit Wasserstoffperoxid besonders effizient von organischen Schadstoffen

Organische Schadstoffe könnten sich künftig auf elegante Weise aus Abwässern entfernen lassen. Wissenschaftler des Max-Planck-Instituts für Intelligente Systeme in Stuttgart haben schwimmende Mikromotoren entwickelt, die organische Substanzen im Wasser abbauen.


Mikroröhrchen für die Abwasserreinigung: Die etwa 500 Mikrometer langen Röhrchen bestehen aus einer äußeren Eisen- und einer inneren Platinschicht. An der Eisenschicht zersetzt Wasserstoffperoxid, das dem Wasser zugesetzt wurde, organische Schadstoffe zu Kohlendioxid und Wasser. An der inneren Platinschicht zerfällt Wasserstoffperoxid in Sauerstoff und Wasser. So wird das Röhrchen zum Düsentriebwerk: Die aus dem Röhrchen strömenden Sauerstoffblasen schieben es in eine Richtung. Die schwimmenden Kläranlagen reinigen Wasser etwa zwölf mal schneller als Eisenröhrchen ohne den Antrieb.

© MPI für Intelligente Systeme

Die mobilen Mikrokläranlagen bestehen aus einem Metallröhrchen mit einer äußeren Eisen- und einer inneren Platinschicht. Als Treibstoff nutzen sie Wasserstoffperoxid, mit dem das Wasser versetzt wird.

Das Oxidationsmittel bewirkt nicht nur, dass eine Mikromaschine wie eine Unterwasserdüse Fahrt aufnimmt, es reagiert an der Oberfläche des Eisenröhrchens auch mit den Schadstoffen.

Viele organische Verunreinigungen lassen sich durch gängige Methoden der Wasseraufbereitung kaum entfernen. Sie in der sogenannten Fenton-Reaktion mit Wasserstoffperoxid an einer Eisenoberfläche zu zersetzen, gilt jedoch als wirkungsvolles Mittel gegen die Substanzen. Wie die Stuttgarter Forscher nun nachwiesen, reinigt ein Schwarm der schwimmenden Mikrokläranlagen das Wasser etwa zwölf Mal schneller als reine Eisenröhrchen, die sich nicht aktiv durch das Wasser bewegen können.

Mikroröhrchen für die Abwasserreinigung: Die etwa 500 Mikrometer langen Röhrchen bestehen aus einer äußeren Eisen- und einer inneren Platinschicht. An der Eisenschicht zersetzt Wasserstoffperoxid, das dem Wasser zugesetzt wurde, organische Schadstoffe zu Kohlendioxid und Wasser. An der inneren Platinschicht zerfällt Wasserstoffperoxid in Sauerstoff und Wasser. So wird das Röhrchen zum Düsentriebwerk: Die aus dem Röhrchen strömenden Sauerstoffblasen schieben es in eine Richtung. Die schwimmenden Kläranlagen reinigen Wasser etwa zwölf mal schneller als Eisenröhrchen ohne den Antrieb.

Vielen organischen Schadstoffen lässt sich mit den gängigen Methoden der Wasseraufbereitung kaum beikommen. Mineralöle, Pestizide, Lösungsmittel, organische Farben und halogenierte Verbindungen lassen sich weder mit chlorhaltigen Chemikalien oder Ozon noch durch Ausflockung effizient aus dem Wasser entfernen. Als sehr wirksam gegen die hartnäckigen Stoffe hat sich jedoch die Fenton-Methode erwiesen. Dabei zersetzt Wasserstoffperoxid, das dem Abwasser zugegeben wird, die Substanzen zu Kohlendioxid und Wasser. Die mehrstufige Reaktion wird von Eisen-II-Ionen (Fe2+) katalysiert. Forscher um Samuel Sánchez des Max-Planck-Instituts für Intelligente Systeme haben nun eine mobile Variante dieser Abwasserreinigung entwickelt: Sie haben Mikromotoren aus Platin mit einer Reinigungsfunktion ausgestattet, indem sie die winzigen Triebwerke mit Eisen ummantelten. Im Wasser bilden sich auf der Eisenoberfläche die Eisen-II-Ionen, die als Katalysator bei der Schadstoffbeseitigung gebraucht werden.

Die 500 Mikrometer langen schwimmenden Kläranlagen stellten die Forscher mit einer seit wenigen Jahren bekannten Technik her: Sie dampften Eisen in einer 100 bis 200 Nanometer dicken Schicht auf kleine rechteckige Lackflächen, mit denen sie ein Glasplättchen versehen hatten. Anschließend brachten sie eine Platinschicht von einem Nanometer Dicke auf das Eisen auf. Wegen der unterschiedlichen mechanischen Eigenschaften der Metalle rollte sich die Doppelschicht von selbst auf, als die Forscher den Lack wegätzten. „Auf diese Weise lassen sich die multifunktionalen Röhrchen in großer Stückzahl herstellen“, sagt Samuel Sánchez, der am Stuttgarter Max-Planck-Institut eine Forschungsgruppe leitet.

Sauerstoffblasen machen ein Mikroröhrchen zum Düsentriebwerk

Die Platinschicht wird zum Motor der Röhrchen, weil sie wie das Eisen eine Reaktion des Wasserstoffperoxids katalysiert, wenn auch eine andere. „Wasserstoffperoxid ist sozusagen das Benzin für unsere Mini-U-Boote“, erklärt Lluis Soler aus der Forschungsgruppe. Das Oxidationsmittel zersetzt sich an seiner Oberfläche nämlich zu Wasser und Sauerstoff, der kleine Blasen bildet. Wenn die Sauerstoffblasen aus dem Inneren der Röhrchen entweichen, wird das Röhrchen zum Düsentriebwerk: Es setzt sich in Bewegung, weil aus den beiden Öffnungen der Röhrchen unterschiedliche Gasmengen austreten. Sobald das Röhrchen Fahrt aufgenommen hat, strömen die Bläschen nur noch aus einer seiner Öffnungen, sodass der Rückstoß es gemächlich in die entgegengesetzte Richtung schiebt.

Auf die Idee, die winzigen Düsentriebwerke mit einem Eisenmantel zu versehen und so zur schwimmenden Kläranlage zu machen, verfielen die Stuttgarter Forscher, als sie über ein anderes Problem nachdachten. Mit Mikro- und Nanomotoren verbindet sich nämlich die Vision, Medikamente gezielt in kranke Organe, etwa zu Tumorzellen, transportieren. Dort könnten sie sich mit Nanokanülen durch Zellmembranen bohren und Wirkstoffe direkt in Zellen injizieren. Diesem Ziel steht bisher jedoch eine großes Hindernis im Weg: Wasserstoffperoxid und andere Stoffe, welche die bisher entwickelten Motoren für ihren Antrieb brauchen, schaden Lebewesen. Das brachte die Forscher auf den Gedanken, die Mikromotoren dort einzusetzen, wo ihr Treibstoff keinen Schaden anrichtet, sondern sogar nützlich ist.

Ein Mittel gegen Farbrückstände und Pestizide

Da die Eisenschicht zudem magnetisch ist, lassen sich die Röhren theoretisch auch zielgenau an schwer zugängliche Verschmutzungen steuern und nach vollendeter Reinigung wieder vollständig aus der Flüssigkeit entfernen. Und überschüssiges Wasserstoffperoxid bereitet bei der Wasseraufbereitung auch keine Probleme, da es durch Licht zu Wasser und Sauerstoff abgebaut wird, wenn auch ohne Katalysator nur langsam.

„Wir wollten Mikromotoren konstruieren, die eine sinnvolle Anwendung haben“, erklärt Sánchez die Motivation der Arbeitsgruppe. Er schränkt allerdings ein, dass die Methode bisher nur im Kleinen funktioniere und der Weg zur industriellen Anwendung noch weit sei. Mit ihrer Arbeit wollen die Stuttgarter Wissenschaftler den Mikromotoren jedoch einen Weg zu künftige Anwendungen in der Umwelttechnik bereiten. Und die könnten Lluis Soler zufolge so aussehen: „Ich könnte mir gut vorstellen, dass Wasser auf diese Weise eines Tages von Farbstoffrückständen aus der Textilindustrie oder Pestiziden aus der Landwirtschaft befreit wird.“

Ansprechpartner
Dr. Samuel Sánchez
Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart
Telefon: +49 711 689-1846
E-Mail: Sanchez@is.mpg.de
Originalpublikation
Lluís Soler, Veronika Magdanz, Vladimir M. Fomin, Samuel Sánchez und Oliver G. Schmidt
Self-Propelled Micromotors for Cleaning Polluted Water
ACS Nano, 1 November 2013; DOI: 10.1021/nn405075d

Dr. Samuel Sánchez | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7676965/mikroroehrchen_abwasser_reinigung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zika und Gelbfieber: Impfstoffe ohne Ei
21.09.2018 | Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg

nachricht Einbahnstraße für das Salz
21.09.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics