Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Killer-T-Zellen“ sind nur im Team gegen Viren stark

10.02.2016

MHH-Forscher: Killer-T-Zellen müssen kooperieren, um virusinfizierte Zellen effektiv zu eliminieren / Wichtig für Zelltherapie und Impfstoff-Entwicklung / „Immunity“ veröffentlicht

Zellen des Immunsystems müssen eng zusammenarbeiten, um unseren Körper vor Krankheitserregern zu schützen. Verschiedene Arten von Immunzellen stehen dabei Bakterien und Viren „Auge in Auge“ gegenüber.


v.l.: Dr. Stephan Halle und Professor Dr. Reinhold Förster und eine 2-Photonenmikroskop-Aufnahme eines Lymphknotens

Foto:MHH/Kaiser

Und wohl niemand erledigt seinen Job so präzise und elegant wie die zytotoxischen T-Lymphozyten (Killer-T-Zellen), die Virus-infizierte Körperzellen erkennen und gezielt abtöten. Neue Impfstoffe und Zelltherapeutika sollen genau diesen Mechanismus nutzen – aber noch ist vieles über die Arbeitsweise dieses „James Bond des Immunsystems“ unbekannt.

Ein Team des Instituts für Immunologie der Medizinischen Hochschule Hannover (MHH) um Professor Dr. Reinhold Förster und Dr. Stephan Halle, PhD, sowie Mitarbeiter um Professor Dr. Martin Messerle aus dem MHH-Institut für Virologie berichtet nun aktuell in der Fachzeitschrift Immunity, wie effektiv Killer-T-Zellen Virus-infizierte Zielzellen abtöten (http://www.cell.com/immunity/home).

Mit Hilfe der sogenannten 2-Photonen-Mikroskopie gelang es den Forschern, erstmals individuelle Killer-T-Zellen bei ihrer Arbeit in virusinfizierten Geweben im Zeitraffer zu filmen.

Man nahm allgemein an, dass Killer T-Zellen im Körper schnell hintereinander immer neue Zielzellen erkennen und alleine töten könnten. In mehreren unterschiedlichen Infektionsmodellen haben die MHH-Forscher nun jedoch gesehen, dass Killer-T-Zellen nur effektiv sind, wenn sie als „Team“ von drei oder mehr Killer-T-Zellen gleichzeitig oder in sehr kurzem zeitlichen Abstand dieselbe infizierte Zelle attackieren.

„Offensichtlich unterscheiden sich einzelne Killer T-Zellen deutlich in ihrer Wirksamkeit, und nur durch einen synchronisierten Angriff wird die Zielzelle stark genug geschädigt“,sagt Professor Förster. Bei der durch mathematische Modelle unterstützten Auswertung arbeiteten die MHH-Forscher eng mit Wissenschaftlern des Helmholtz-Zentrums für Infektionsforschung (HZI) in Braunschweig zusammen.

„Wir haben auch gesehen, dass Killer-T-Zellen in der Regel keine stabilen Interaktionen mit ihren Zielzellen eingehen, sondern sehr dynamisch und ständig in Bewegung sind. Dadurch können auch immer wieder neue Killer-T-Zellen eine bestimmte Zielzelle erreichen“, erläutert Dr. Halle.

Diese Ergebnisse werfen ein grundsätzlich neues Licht darauf, wie Killer-T-Zellen ihre Ziele im Organismus zerstören. Impfstrategien sollten somit zukünftig daraufhin optimiert werden, eine ausreichende Anzahl dieser hochbeweglichen und kooperativ angreifenden Killer-T-Zellen zu generieren.

Weitere Informationen erhalten Sie bei Dr. Stephan Halle, PhD: Telefon (0511) 532-9725, halle.stephan@mh-hannover.de, und Professor Dr. Reinhold Förster: Telefon (0511) 532-9721, foerster.reinhold@mh-hannover.de

Stefan Zorn | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-hannover.de

Weitere Berichte zu: HZI Immunologie Killer-T-Zellen T-Zellen Viren Zielzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Blasentang zeigt gekoppelte Reaktionen auf Umweltveränderungen
15.10.2019 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Nachweis erbracht: Genmutation in Chloridkanal löst Hyperaldosteronismus aus
15.10.2019 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Neuer Werkstoff für den Bootsbau

Um die Entwicklung eines Leichtbaukonzepts für Sportboote und Yachten geht es in einem Forschungsprojekt der Technischen Hochschule Mittelhessen. Prof. Dr. Stephan Marzi vom Gießener Institut für Mechanik und Materialforschung arbeitet dabei mit dem Bootsbauer Krake Catamarane aus dem thüringischen Apolda zusammen. Internationale Kooperationspartner sind Prof. Anders Biel von der schwedischen Universität Karlstad und die Firma Lamera aus Göteborg. Den Projektbeitrag der THM fördert das Bundesministerium für Wirtschaft und Energie im Rahmen des Zentralen Innovationsprogramms Mittelstand mit 190.000 Euro.

Im modernen Bootsbau verwenden die Hersteller als Grundmaterial vorwiegend Duroplasten wie zum Beispiel glasfaserverstärkten Kunststoff. Das Material ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

Bauingenieure im Dialog 2019: Vorträge stellen spannende Projekte aus dem Spezialtiefbau vor

15.10.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2019

14.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rätsel gelöst: Das Quantenleuchten dünner Schichten

15.10.2019 | Physik Astronomie

Immer im richtigen Takt: Ultrakurze Lichtblitze unter optischer Kontrolle

15.10.2019 | Physik Astronomie

„Tanzmuster“ von Skyrmionen vermessen

15.10.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics