Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kein Zusammenhang zwischen Fläche und Haftkraft: Forscher bestimmen „Sitzfläche“ von Bakterien

11.07.2017

Physikern und Biologen der Universität des Saarlandes ist es gelungen, eine Methode zu entwickeln, die Kontaktfläche zwischen Bakterien und Oberflächen zu bestimmen. Interessanterweise muss eine große „Sitzfläche“ nicht gleichzeitig eine große Haftkraft bedeuten, wie man zunächst vermuten würde. Individuelle Eigenheiten einzelner Bakterien zeigen, dass lokale Unterschiede der Zusammensetzung der Zellwandproteine für die unterschiedlich starke Haftung verantwortlich sind. Diese Ergebnisse können nun dazu genutzt werden, antibakterielle Materialien zu optimieren. Die Studie ist heute im renommierten Forschungsmagazin „Nanoscale“ erschienen.

Bakterien der Spezies Staphylococcus aureus gehören zu den am weitesten verbreiteten und problematischsten Krankheitserregern unserer Zeit. Ihren Erfolg als „Krankenhauskeim“ verdanken sie nicht zuletzt der Tatsache, dass sie sowohl an künstlichen als auch an natürlichen Oberflächen anhaften und dort sehr widerstandsfähige Biofilme bilden können.


Zellwandproteine stellen in einem kreisförmigen Bereich (gestrichelt) den Kontakt zur Oberfläche her, hier mit einer wasserabweisenden (rot) und einer wasserliebenden (blau) Oberfläche.

Grafik: AG Jacobs

Diese Biofilme schützen die einzelnen Bakterienzellen weitestgehend vor der menschlichen Immunabwehr und sind nur schwer wieder von der Oberfläche zu entfernen. Deshalb sind sie beispielsweise auf Implantaten sehr gefürchtet und ein Hauptgrund für Infektionen nach Operationen. Um es nicht so weit kommen zu lassen, ist es sinnvoll, schon die Entstehung von Biofilmen zu vermeiden.

Dazu muss die Wissenschaft den Anhaftungsmechanismus der Bakterien genauer verstehen, so dass sie diesen beeinflussen kann. Zum Beispiel ist es hilfreich zu wissen, wie groß der Anteil einer einzelnen Bakterienzelle ist, der überhaupt mit der jeweiligen Oberfläche in Kontakt kommt. Da die kugelförmigen Bakterien selbst nur einen Mikrometer (ein Millionstel Meter) groß sind, ist es schwerlich möglich, diese Kontaktfläche mit Hilfe eines klassischen Lichtmikroskops zu bestimmen.

Das Team um die Experimentalphysikerin Karin Jacobs und den Mikrobiologen Markus Bischoff machte sich deshalb eine andere Eigenschaft der Bakterien zunutze: Die Stärke der Haftung einzelner Bakterien ist für verschiedene Oberflächen oft sehr unterschiedlich. So haften die Zellen, die im Fokus der Studie sind, auf stark wasserabweisenden (hydrophoben) Oberflächen wesentlich besser als auf benetzbaren (hydrophilen) Oberflächen.

Die Forscherinnen und Forscher stellten deshalb auf Grundlage von Silizium eine Oberfläche her, die beide Eigenschaften – stark wasserabweisend und sehr gut benetzbar – auf kleinster Skala gleichzeitig erfüllt. Die Haftkraft einzelner Bakterien auf dieser maßgeschneiderten Oberfläche bestimmten sie anschließend mit Hilfe eines sehr genauen Rasterkraftmikroskops, einem sogenannten Kraftspektroskop: Ein einzelnes Bakterium wird dabei leicht mit der Oberfläche in Kontakt gebracht und anschließend wieder von dieser abgezogen. Dabei wird die Kraft gemessen, die zum Ablösen des Bakteriums von der Oberfläche erforderlich ist. Dies ist die Haftkraft.

Auf dem hydrophoben, dem wasserabweisenden, Bereich ist diese Haftkraft etwa zehn Mal stärker als auf dem hydrophilen Bereich. Diese Prozedur wird nun an unterschiedlichen Stellen der Probe so wiederholt, dass die Messung sukzessive näher an der Grenze zwischen dem hydrophoben und dem hydrophilen Bereich durchgeführt wird, um dann auch die Grenzregion zwischen beiden Bereichen auszumessen und schließlich im rein hydrophilen Bereich bei der niedrigsten Haftkraft zu enden.

Durch die Information über die Haftkraft einer einzelnen Zelle in Abhängigkeit des exakten Ortes auf der maßgeschneiderten Oberfläche – und deren Benetzbarkeit – konnten die Saarbrücker Wissenschaftler Rückschlüsse auf die Größe der Kontaktfläche zwischen Bakterium und Oberfläche ziehen. Diese Methode bietet sich auch für andere Messungen an, beispielsweise für Haftkraftmessungen mit kleinen Kügelchen („Kolloide“).

Die Forscher fanden heraus, dass der Durchmesser der rund angenommenen Kontaktfläche in der Größenordnung von einigen zehn bis mehreren hundert Nanometern (ein Nanometer entspricht einem Milliardstel Meter) liegt und für verschiedene, gleich große Individuen der Spezies Staphylococcus aureus deutlich schwanken kann.

Zum Vergleich wurde auch ein nicht pathogener Verteter der Bakteriengattung Staphylococcus untersucht, der wesentlich schlechter an Oberflächen anhaften kann. Zur Überraschung der Forscher zeigte sich, dass die Größe der Kontaktfläche keinen Einfluss auf die Stärke der Haftkraft der jeweiligen Bakterienzelle hat. Des Weiteren konnten die Forscher zeigen, dass die Bakterien trotz ihrer kugelförmigen Gestalt nicht als einfache harte Kugeln beschrieben werden können, wenn sie mit einer Oberfläche wechselwirken.

Vielmehr müsse man sich ein Bakterium als einen Ball vorstellen, der mit einem weichen, „zotteligen Fell“ aus Zellwandproteinen überzogen ist, das wesentlich für den Haftungsmechanismus verantwortlich ist. Dieser kann lokal stark unterschiedlich sein, was auf die unterschiedliche Zusammensetzung an Haftproteinen in dieser Region zurückzuführen ist, die die Haftung zu wasserabweisenden Oberflächen besonders gut herstellen kann oder eben nicht.

Die Vorgehensweise der Studie kann prinzipiell auf alle anderen Arten von bakteriellen Erregern angewendet werden, egal ob kugel- oder stäbchenförmig, und die Ergebnisse können den Weg ebnen, Oberflächen zu entwickeln, deren Struktur genau in der Größenordnung der gemessenen Kontaktfläche angepasst wird, um die Haftung von Bakterien zu unterbinden oder – falls die Anhaftung der Bakterien auf diesen Oberflächen gewünscht ist, beispielsweise bei der Abfallbeseitigung – zu verstärken.

Die Studie ist im Rahmen des DFG-Sonderforschungsbereichs 1027 „Physical modeling of non-equilibrium processes in biological systems“ entstanden. Darin erforschen Physiker, Mediziner, Bioinformatiker, Biologen und Chemiker die physikalischen Grundlagen biologischer Prozesse, also zum Beispiel die Grundlagen von Zellbewegungen.

Weitere Informationen zum SFB 1027: www.sfb1027.uni-saarland.de.

Details zur Studie:
C. Spengler, N. Thewes, P. Jung, M. Bischoff and K. Jacobs, Determination of the nano-scaled contact area of Staphylococcal cells; Nanoscale (2017), DOI: 10.1039/c7nr02297b.

Kontakt:
Prof. Dr. Karin Jacobs und M.Sc. Christian Spengler
Universität des Saarlandes
Experimentalphysik
Tel.: (0681) 30271788
E-Mail: k.jacobs@physik.uni-saarland.de

Prof. Dr. Markus Bischoff
Universität des Saarlandes
Institut für Medizinische Mikrobiologie und Hygiene
Tel.: (06841) 1623963
E-Mail: markus.bischoff@uks.eu

Weitere Informationen:

http://pubs.rsc.org/en/content/articlelanding/2017/nr/c7nr02297b#!divAbstract

Thorsten Mohr | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wenn für Fischlarven die Nacht zum Tag wird
18.01.2019 | Universität Siegen

nachricht Handgestrickte Moleküle
18.01.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedankenexperiment mithilfe eines verschränkten Atom-Licht-Zustands.

Bereits 1935 formulierte Erwin Schrödinger die paradoxen Eigenschaften der Quantenphysik in einem Gedankenexperiment über eine Katze, die gleichzeitig tot und...

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Implantate aus Nanozellulose: Das Ohr aus dem 3-D-Drucker

Aus Holz gewonnene Nanocellulose verfügt über erstaunliche Materialeigenschaften. Empa-Forscher bestücken den biologisch abbaubaren Rohstoff nun mit zusätzlichen Fähigkeiten, um Implantate für Knorpelerkrankungen mittels 3-D-Druck fertigen zu können.

Alles beginnt mit einem Ohr. Empa-Forscher Michael Hausmann entfernt das Objekt in Form eines menschlichen Ohrs aus dem 3-D-Drucker und erklärt: «Nanocellulose...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Smarte Sensorik für Mobilität und Produktion 4.0 am 07. Februar 2019 in Oldenburg

18.01.2019 | Veranstaltungen

16. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

17.01.2019 | Veranstaltungen

Erstmalig in Nürnberg: Tagung „HR-Trends 2019“

17.01.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Zeitwirtschafts- und Einsatzplanungsprozesse effizient und transparent gestalten mit dem Workforce Management System der GFOS

18.01.2019 | Unternehmensmeldung

Der Schlaue Klaus erlaubt keine Fehler

18.01.2019 | Informationstechnologie

Neues Verfahren zur Grundwassersanierung: Mit Eisenoxid gegen hochgiftige Stoffe

18.01.2019 | Verfahrenstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics