Katalysatoren auf Tuchfühlung

Ji Wong Lee und seine Kollegen haben einen einfachen Weg gefunden, Katalysatoren an Nylonfasern zu heften. So lässt sich die aktive Oberfläche der chemischen Hilfsmittel vergrößern, sodass chemische Prozesse effizienter werden.<br>© Ji Wong Lee<br>

Ein internationales Team um Chemiker des Max-Planck-Instituts für Kohlenforschung in Mülheim an der Ruhr hat auf denkbar einfache Weise diverse Katalysatoren auf Nylon fixiert und so die aktive Oberfläche der chemischen Hilfsmittel vergrößert, wodurch ihre Effizienz steigt.

Einer der Katalysatoren ist für die Synthese eines Arzneiwirkstoffes wichtig, lässt sich bisher aber nur in gelöster Form einsetzen – das macht den Herstellungsprozess sehr aufwendig und teuer. Die organotextile Katalyse könnte solche Synthesen deutlich vereinfachen.

Unter funktionalen Textilien versteht man in der Regel winddichte Jacken, atmungsaktives Schuhwerk oder besonders wärmende Unterwäsche. Doch der Begriff könnte bald auch für etwas anderes stehen – Textilien, die mithilfe von organischen Katalysatoren funktionalisiert werden. Forscher am Max-Planck-Institut für Kohlenforschung in Mülheim an der Ruhr haben nun in Zusammenarbeit mit Wissenschaftlern vom Deutschen Textilforschungszentrum in Krefeld und von der Sungkyunkwan Universität Suwon in Korea ein Verfahren entwickelt, um verschiedene organische Katalysatoren an Textilien zu fixieren – mit Hilfe von UV-Strahlen. Der Stoff dient somit als Träger für die Substanzen, an denen eine chemische Reaktion.

Bislang habe sich die Wissenschaft eher mit der makroskopischen Funktionalität von Textilien wie etwa von Kleidung beschäftigt, erklärt Ji Wong Lee, der am Max-Planck-Institut für Kohlenforschung vor kurzem seine Promotion bei Benjamin List, Leiter der Abteilung für Homogene Katalyse abgeschlossen hat. „Mit unserer Methode können wir hingegen einfache Textilien mit mikroskopischen Funktionalitäten ausstatten“, so der Koreaner. Gemeinsam mit seinen Kollegen rüstete er Nylon mit Katalysatoren aus und erfand so die organotextile Katalyse. Diese kann man sich als chemische Werkzeuge vorstellen, die bei Reaktionen jeweils unterschiedliche Aufgaben erledigen.

Hervorragende Ausbeute, geringer Verschleiß

Für ihre Untersuchungen verwendeten die Mülheimer Forscher drei organische Katalysatoren: einen basischen (Dimethylaminopyridin, DMAP), eine Sulfonsäure und einen Katalysator, der sowohl eine basische als auch eine Säure-Funktionalität hat. Letzterer dient in der pharmazeutischen Industrie dazu, eine Reaktion zu einem von zwei Produkten zu lenken, die chemisch völlig identisch sind. Die beiden Formen sind allerdings wie die linke und die rechte Hand spiegelbildlich gebaut, wobei nur eine Variante die gewünschte medizinisch Wirkung zeigt. Der Katalysator, der diese Variante erzeugt, ließ sich bisher nur in gelöster Form einsetzen und musste anschließend wieder abgetrennt werden. Mit einem auf Stoff fixierten Katalysator könnte die aufwendige Trennung entfallen.

Um die Hilfsmittel an die Nylonfasern zu heften, bestrahlten die Chemiker den mit einem Katalysator versetzten Stoff fünf Minuten lang mit UV-Licht. Länger nicht, weil das die Aktivität des Katalysators und auch seine Fixierung am Nylon beeinträchtigen würde. Ein vergleichbares Verfahren gab es vorher noch nicht.

Die quasi mit dem Stoff verwobenen Katalysatoren zeigten alle Eigenschaften, die Chemiker von einem solchen System erwarten: So kann sich die Ausbeute der chemischen Reaktionen, die die Wissenschaftler mit den beladenen Nylonstreifen vornahmen, sehen lassen: Alle drei Katalysatoren setzten die Ausgansstoffe zu rund 90 Prozent zu den gewünschten Produkten um. Und der in der pharmazeutischen Industrie gebräuchliche Kuppler, der nur eins von zwei Spiegelbild-Molekülen erzeugt, erreichte eine Trefferquote von mehr als 95 Prozent – ohne dabei große Anzeichen von Verschleiß zu zeigen. Mehrere hundert Versuchsdurchläufe vollzog Ji Wong Lee und stellte dabei fest, dass die Katalysatoren kaum etwas von ihrer Funktionalität einbüßten.

Eine große Oberfläche macht chemische Reaktionen effizienter

Gegenüber anderen Möglichkeiten, Katalysatoren zu fixieren, kann die „organotextile Katalyse“ mit einigen Vorteilen aufwarten: Vor allem bietet es den Reaktionspartnern eine größere Oberfläche als andere Trägermaterialien wie etwa Kunststoffkugeln oder -folien. Und je größer die Oberfläche, desto effizienter verläuft eine Reaktion. Zudem ist Nylon flexibel und sehr preiswert. Trockene, mit Katalysatoren beladene Stoffe lassen sich leicht transportieren, sodass sich die Voraussetzungen für manche chemische Prozesse leichter dort schaffen lassen, wo sich kaum anspruchsvolle chemische Anlagen errichten lassen. So könnte die organotextile Katalyse etwa helfen, Wasser dort aufzuarbeiten, wo Menschen von der Wasserversorgung abgeschnitten sind.

„Mit unserer Methode kann man günstig dauerhaft funktionalisierte Textilien herstellen, ohne dass die Umwelt belastet wird“, sagt Ji Wong Lee. Er ist fest davon überzeugt, dass sich das Verfahren in mehreren wissenschaftlichen Bereichen anwenden lässt – ebenso wie in industriellen Prozessen. „Das könnte neben der Chemie auch in der Biologie, in den Materialwissenschaften oder in der Pharmazie der Fall sein.“

Ansprechpartner
Prof. Dr. Benjamin List
Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr
Telefon: +49 208 306-2410
Fax: +49 208 306-2999
E-Mail: list@­kofo.mpg.de
Originalpublikation
Ji-Woong Lee, Thomas Mayer-Gall, Klaus Opwis, Choong Eui Song, Jochen Stefan Gutmann, Benjamin List
Organotextile Catalysis
Science, 13. September 2013; doi: 10.1126/science.1242196

Media Contact

Prof. Dr. Benjamin List Max-Planck-Institut

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer