Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kaltes Wasser: Und es bewegt sich doch!

27.06.2017

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am Institut für Physikalische Chemie der Universität Innsbruck Wasser bei Temperaturen von rund minus 150 Grad Celsius in zähflüssigem Zustand zu beobachten und dessen Eigenschaften zu untersuchen. Bereits vor vier Jahren hat das Team um Thomas Lörting Hinweise gefunden, dass stark unterkühltes Wasser aus zwei unterschiedlich dichten Formen existiert.


Künstlerische Darstellung der beiden zähflüssigen Formen von Wasser vor einem Röntgenbeugungsbild aus der Studie.

Mattias Karlén


Die Messungen wurden in der PETRA III-Experimentierhalle des DESY in Hamburg durchgeführt.

Uni Innsbruck

„In unserem Experiment zeigte sich damals, dass es abhängig vom Umgebungsdruck zwei unterschiedliche flüssige Formen von Wasser gibt, eine mit niedriger Dichte und eine hochdichte Form.“ Dieser Befund ist überaus erstaunlich, könnte er doch bedeuten, dass auch ganz normales Leitungswasser aus zwei Flüssigkeiten besteht. Untersucht werden kann das Phänomen freilich nur unter extremen Bedingungen, weil die beiden Flüssigkeiten bei sehr tiefen Temperaturen getrennt voneinander existieren.

Wassermoleküle in Bewegung

Nun hat das Team um Thomas Lörting gemeinsam mit Forschern der Universität Stockholm am deutschen Großforschungszentrum DESY in Hamburg stark unterkühltes Wasser mit Hilfe eines stark gebündelten Röntgenstrahls untersucht. Mit Kleinwinkel-Röntgenstreuung lässt sich nämlich die Bewegung von Molekülen in einer Probe bestimmen.

„Wir wollten in diesem Experiment sehen, ob die Moleküle wie in Festkörpern an Ort und Stelle gebunden sind, oder ob sie sich wie in einer Flüssigkeit im Raum umherbewegen“, erzählt Thomas Lörting. Die an der Universität Innsbruck erzeugten Proben aus amorphem Eis - also nicht kristallisiertem Eis - wurden am DESY mit Röntgenstrahlen beschossen und so die Bewegung der Wassermoleküle abhängig von der Temperatur bestimmt. Dabei zeigte sich, dass ab circa minus 160 Grad Celsius die Bewegung der Moleküle stark zunimmt.

„Aus der Analyse der Daten konnten wir als Bewegungsraum eines Moleküls 50 Nanoquadratmeter pro Sekunde bestimmten, was für ein Molekül eine sehr große Fläche ist“, betont Lörting. Auch nach dem Übergang von hochdichtem in niedrigdichtes Wasser bei circa minus 137 Grad Celsius bewegen sich die Moleküle, allerdings nicht mehr ganz so schnell. Diese Dynamik zeigt, dass die zwei Phasen tatsächlich flüssig sind.

„Es ist wie ein wahrgewordener Traum beobachten zu können, wie sich Wasser von einem glasartigen Zustand in eine viskose Flüssigkeit und dann fast sofort in eine weitere, noch zähflüssigere Substanz von sehr viel niedrigerer Dichte verwandelt“, freut sich Katrin Amann-Winkel, ehemaliges Mitglied der Arbeitsgruppe von Thomas Lörting in Innsbruck und nun Forscherin an der Universität Stockholm.

Neue Form der Chemie möglich

In Zukunft wollen die Innsbrucker Wissenschaftler ein Experiment bauen, in dem sie beliebig zwischen den beiden Zuständen hin- und herspringen können. „Dazu müssen wir das System in einen Gleichgewichtszustand bringen, was nur unter hohem Druck möglich ist“, sagt Thomas Lörting. Es gibt bereits Ideen, wie die aktuellen Messungen in einer Hochdruckkammer wiederholt werden können. Die Forscher wollen in den nächsten Jahren aber auch klären, ob Chemie in stark unterkühltem Wasser nur in Zeitlupe abläuft, oder ob dieses Tieftemperatur-Lösungsmittel das Tor zu einer ganz neuen Form von Chemie aufstößt.

Die aktuelle Arbeit entstand im Rahmen der Forschungsplattform Material- und Nanowissenschaften an der Universität Innsbruck und wurde unter anderem vom österreichischen Forschungsförderungsfonds (FWF) finanziell unterstützt.

Publikation: Diffusive dynamics during the high-to-low density transition in amorphous ice. Fivos Perakis, Katrin Amann-Winkel, Felix Lehmkühler, Michael Sprung, Daniel Mariedahl, Jonas A. Sellberg, Harshad Pathak, Alexander Späh, Filippo Cavalca, Daniel Schlesinger, Alessandro Ricci, Avni Jain, Bernhard Massani, Flora Aubree, Chris J. Benmore, Thomas Loerting, Gerhard Grübel, Lars G. M. Pettersson, and Anders Nilsson. Proc. Natl. Acad. Sci. 2017 DOI: 10.1073/pnas.1705303114

Rückfragehinweis:
Thomas Lörting
Institut für Physikalische Chemie
Universität Innsbruck
Telefon: +43 512 507 58019
E-Mail: thomas.loerting@uibk.ac.at

Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Telefon: +43 512 507 32022
E-Mail: christian.flatz@uibk.ac.at

Weitere Informationen:

http://dx.doi.org/10.1073/pnas.1705303114 - Diffusive dynamics during the high-to-low density transition in amorphous ice. Fivos Perakis, et. al., Proc. Natl. Acad. Sci. 2017
http://www.uibk.ac.at/physchem/ - Institut für Physikalische Chemie, Universität Innsbruck
http://www.fysik.su.se/english/ - Department of Physics, Stockholm University
https://www.desy.de/ - Deutsches Elektronen-Synchrotron (DESY)

Dr. Christian Flatz | Universität Innsbruck

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Woher Muskeln wissen, wie spät es ist
21.08.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Bienen brauchen es bunt
20.08.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Mischung macht‘s: Jülicher Forscher entwickeln schnellladefähige Festkörperbatterie

Mit Festkörperbatterien sind aktuell große Hoffnungen verbunden. Sie enthalten keine flüssigen Teile, die auslaufen oder in Brand geraten könnten. Aus diesem Grund sind sie unempfindlich gegenüber Hitze und gelten als noch deutlich sicherer, zuverlässiger und langlebiger als herkömmliche Lithium-Ionen-Batterien. Jülicher Wissenschaftler haben nun ein neues Konzept vorgestellt, das zehnmal größere Ströme beim Laden und Entladen erlaubt als in der Fachliteratur bislang beschrieben. Die Verbesserung erzielten sie durch eine „clevere“ Materialwahl. Alle Komponenten wurden aus Phosphatverbindungen gefertigt, die chemisch und mechanisch sehr gut zusammenpassen.

Die geringe Stromstärke gilt als einer der Knackpunkte bei der Entwicklung von Festkörperbatterien. Sie führt dazu, dass die Batterien relativ viel Zeit zum...

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Dialog an Deck, Science Slam und Pong-Battle

21.08.2018 | Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Linsen im Fokus

21.08.2018 | Seminare Workshops

Dialog an Deck, Science Slam und Pong-Battle

21.08.2018 | Veranstaltungsnachrichten

Woher Muskeln wissen, wie spät es ist

21.08.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics