Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Jäger zu Gejagten werden

09.01.2009
Braunschweiger Helmholtz-Forscher zeigen, wie Bakterien Immunzellen in den Zelltod treiben.

Fresszellen gehören zur ersten Verteidigungslinie des Immunsystems. Bakterien, die in den Körper eindringen, sind den Fresszellen jedoch nicht schutzlos ausgeliefert. Sie bilden Substanzen, die die Fresszellen angreifen und abtöten können.

Eva Medina und ihre Arbeitsgruppe "Infektionsimmunologie" vom Helmholtz-Zentrum für Infektionsforschung (HZI) in Braunschweig haben jetzt einen neuen Mechanismus entdeckt, der zur Zerstörung der Fresszellen führt. Die Ergebnisse veröffentlicht das Wissenschaftsmagazin "Cellular Microbiology" in seiner aktuellen Ausgabe.

Fresszellen erkennen Bakterien, Pilze und Viren, die den Körper krank machen können. Sie nehmen diese Keime auf, um sie zu bekämpfen. Im Zellinneren zerstören sie die Eindringlinge und locken mit chemischen Botenstoffen weitere Immunzellen an den Infektionsherd. Wenn die Fresszellen es nicht schaffen, sich gegen die Bakterien zur Wehr zu setzen, gewinnen die Bakterien die Oberhand - die Infektion breitet sich aus.

Eva Medina und ihre Arbeitsgruppe am HZI untersuchten nun, wie die Bakterienart Streptococcus pyogenes die Fresszellen angreift. Das Ergebnis überraschte die Forscher: Die Bakterien zerstören die Kraftwerke der Fressezellen, die Mitochondrien. Dadurch bricht der Energiehaushalt zusammen und die Zellen sterben. In ihren Experimenten klärten die Forscher den bisher unbekannten Mechanismus auf, der zur Zerstörung der Mitochondrien und damit zum Zelltod führt.

Am Anfang stehen von den Bakterien produzierte Substanzen, die die Zellwand der Fresszellen durchlöchern. "Bakterien produzieren diese sogenannten Cytolysine ständig, um vorbereitet zu sein, wenn sie auf unsere Immunabwehr treffen", sagt Eva Medina. Die Forscher versuchten nun, die Löcher in der Membran der Fresszellen zu stopfen und damit die Zellen zu retten. Obwohl ihnen dies gelang, starben die Zellen trotzdem. Den Grund fand Medinas Team nach einiger Zeit: Die Bakterien hatten nicht nur die Zellwand durchlöchert, sondern dabei auch die "Kraftwerke der Zellen", die Mitochondrien in Mitleidenschaft gezogen. "Normalerweise haben die Fresszellen gelernt, diesen Cytolysinen zu entgehen und sie zu neutralisieren. Aber die Löcher in der Membran stressen die Zellen und beeinträchtigen auch die Mitochondrien im Zellinneren. Schließlich geben sie auf und produzieren keine Energie mehr", sagt Medina.

Was für die Fresszellen den Tod bedeutet, hilft den Bakterien bei der Infektion. "Die Bakterien töten die Fresszellen heimtückisch aus der Distanz. Die erste Verteidigungslinie des Körpers bricht zusammen. Durch den Zelltod der Fresszellen entstehen Gewebeverletzungen und die Bakterien können sich besser ausbreiten", sagt Medina. "Bis das Immunsystem merkt, was los ist, ist es schon zu spät."

Originalatikel: Oliver Goldmann, Inka Sastalla, Melissa Wos-Oxley, Manfred Rohde and Eva Medina: Streptococcus pyogenes induces oncosis in macrophages through the activation of an inflammatory programmed cell death pathway, Cell Microbiol 2009, 11(1):138-155

Hannes Schlender | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-hzi.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics