Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Irrtum aufgeklärt: Antriebsgelenk der Stabheuschrecke entdeckt

16.02.2016

Forschende der Universität Bielefeld analysieren Bewegung des sechsbeinigen Insekts

Die Stabheuschrecke ist in der Biologie ein beliebtes Untersuchungsmodell, um Laufbewegungen bei Insekten zu verstehen. Ihr Vorteil: Körper und Nervensystem sind vergleichsweise einfach aufgebaut. In Lehrbüchern wurde über Jahrzehnte behauptet, dass die Kraft zur Stützung des Körpers und die Kraft zur Fortbewegung unabhängig voneinander von verschiedenen Gelenken geregelt werden.


Chris Dallmann arbeitet mit Stabheuschrecken. Sie sind bis zu acht Zentimeter lang. Anders als Heuschrecken können sie nicht springen, sondern nur gehen und klettern. Sie ähneln kleinen Äs

Foto: CITEC/Universität Bielefeld


Welche Kräfte üben die Beine einer Stabheuschrecke aus, und wie bewegt sich das Tier? Das messen CITEC-Forscher mit seitlichen Trittsteinen (weiß) und reflektierenden Markern.

Foto: CITEC/Universität Bielefeld

„Das ist nicht richtig“, sagt jetzt der Biologe Chris Dallmann. „Tatsächlich ist ein und dasselbe Gelenk für beide Aufgaben zuständig. Das können wir mit unseren neuen Analysen belegen“, sagt der Doktorand des Exzellenzclusters Kognitive Interaktionstechnologie (CITEC) der Universität Bielefeld. Die Forschungsergebnisse stellt Dallmann zusammen mit den Professoren Dr. Volker Dürr und Dr. Josef Schmitz im Fachmagazin „Proceedings of the Royal Society“ vor. Die New York Times präsentiert das Forschungsergebnis seit gestern (15.2.2016) in einem Videobeitrag.

„Wir wollen herausfinden, wie sich Stabheuschrecken fortbewegen und welche Aufgabe die einzelnen Teile der Beine dabei haben“, erklärt Professor Dr. Josef Schmitz. Professor Dr. Volker Dürr und er betreuen die Doktorarbeit von Chris Dallmann.

„Erstaunlicherweise kommt die Kraft zur Vorwärtsbewegung und Körperunterstützung aus dem gleichen Gelenk. Dieses Gelenk dient als Antriebseinheit und erzeugt die größte Kraft im Bein. Die anderen Beingelenke dienen gewissermaßen als Steuereinheiten, welche die Antriebskraft so umlenken, dass sich das Tier sowohl über dem Boden halten als auch vorwärts bewegen kann“, sagt Dallmann. „Ein ähnliches Prinzip gilt beispielsweise beim Insektenflug. Dort stellen große Antriebsmuskeln die Kraft bereit, die dann von kleineren Steuermuskeln in Auftrieb und Vortrieb umgeleitet werden. In der Evolution hat sich offenbar diese prinzipielle Funktionsaufteilung bewährt.“

Noch vor kurzem waren sich Biologen weltweit sicher, dass die Kraft für die Vorwärtsbewegung der Stabheuschrecke aus dem Gelenk kommt, um das sich das Bein rückwärts bewegt. „Der Grund für die falsche Annahme war, dass die Messmethoden zu ungenau waren“, berichtet Josef Schmitz. „Stabheuschrecken wiegen nur etwa ein Gramm. Wegen des geringen Gewichts ließ sich bisher nur sehr schlecht berechnen, welche Kraft die einzelnen Beinglieder ausüben.“

Dallmann arbeitet in der Forschungsgruppe Biologische Kybernetik der Fakultät für Biologie, die von Volker Dürr geleitet wird und am Exzellenzcluster CITEC beteiligt ist. Dallmann wirkt auch an der Weiterentwicklung des Laufroboters Hector mit, für den sich die Forscherinnen und Forscher von den Bewegungen der Stabheuschrecke inspirieren lassen.

Die Forschungsgruppe Biologische Kybernetik hat ein neues Verfahren entwickelt, das mit dem Leichtgewicht der Stabheuschrecke zurechtkommt. Es misst zum einen sehr präzise die Kräfte, die das ganze Bein auf den Boden ausübt. Zum anderen misst es mit hoher zeitlicher Auflösung, wie sich das Bein im Raum bewegt. „Indem ich diese beiden Datenpakete kombiniere, kann ich berechnen, wie viel Kraft jedes einzelne Gelenk freisetzt“, erklärt Dallmann. So kann er zeigen, welches Gelenk die Bewegung antreibt und welche Gelenke die Antriebskraft lediglich umleiten.

Jedes der sechs Beine der Stabheuschrecke wird maßgeblich von drei Gelenken bewegt. Wie ein „L“ sind sie mit dem Körper des Tieres verbunden. Ein Hüftgelenk (Thorax-Coxa-Gelenk) verbindet das Bein mit dem Körper, und um dieses Gelenk bewegt sich das Bein rückwärts. Ein zweites Hüftgelenk (Coxa-Trochanter-Gelenk) verbindet die Hüfte mit dem Oberschenkel, um dieses Gelenk bewegt sich das Bein nach unten. Ein Kniegelenk (Femur-Tibia-Gelenk) verbindet schließlich den Oberschenkel mit dem Unterschenkel, um dieses Gelenk bewegt sich das Bein nach außen.

Um herauszubekommen, wie viel Kraft die einzelnen Beingelenke der Stabheuschrecke erzeugen, ließ Dallmann die Tiere auf einem Steg mit Trittsteinen laufen. Sensoren in den Trittsteinen erfassen den Druck und die Querkräfte, die von den Füßen der Stabheuschrecke ausgehen. Gleichzeitig zeichnete Dallmann den Gang des Insekts mit einem System zur Bewegungserfassung auf. Das Vicon-System registriert mit Infrarotkameras die Bewegung von 17 kleinen Reflektoren (Markern), die an dem Außenskelett der Stabheuschrecke kleben.

„Als wir die Messung der Bewegung und der Bodenreaktionskräfte zusammengebracht haben, wurde klar, dass der Vortrieb gar nicht durch das Hüftgelenk erfolgt, um das sich das Bein nach hinten bewegt“, so Dallmann. „Vielmehr entsteht der Vortrieb automatisch dadurch, dass der Oberschenkel stark nach unten drückt, um den Körper zu stützen.“ Forscher dachten bislang, das Herunterdrücken des Schenkels diene alleine der Körperunterstützung.

Die neuen Erkenntnisse dürften nicht nur Änderungen in den Lehrbüchern mit sich bringen. Das Wissen soll auch mit der künstlichen Stabheuschrecke Hector erprobt werden. „Der Roboter ist ähnlich der Stabheuschrecke mit elastischen Antrieben ausgestattet“, sagt Chris Dallmann. „Wir wollen jetzt testen, welche Vorteile es hat, wenn ein Antrieb wie beim tierischen Vorbild sowohl die Körperhöhe als auch die Fortbewegung regelt.“

Chris Dallmann befasst sich in seiner Doktorarbeit mit der Frage, wie Stabheuschrecken ihr Gehen an die Umgebung anpassen. Er ist seit Ende 2013 Mitglied der CITEC-Graduiertenschule. Die Einrichtung ist 2008 gegründet worden und sorgt für die weiterführende wissenschaftliche Qualifikation in der Kognitiven Interaktionstechnologie an der Universität Bielefeld. Derzeit hat die Graduiertenschule rund 100 Mitglieder.

Originalartikel:
Chris Dallmann, Volker Dürr, Josef Schmitz: Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control. Proceedings of the Royal Society B: Biological Sciences 283 (1823). 20 January 2016.DOI: 10.1098/rspb.2015.1708, erschienen am 20. Januar 2016.

Kontakt:
Chris Dallmann, Universität Bielefeld
Fakultät für Biologie
Telefon: 0521 106-5530
E-Mail: cdallmann@uni-bielefeld.de

Weitere Informationen:

http://www.nytimes.com/2016/02/15/science/stick-insect-helps-scientists-study-ho... Videobeitrag der New York Times
http://youtu.be/1DB6bd61i0o Video zu Hector bei research_tv („Eine Roboter-Stabheuschrecke lernt laufen“)
http://www.uni-bielefeld.de/biologie/Kybernetik Forschungsgruppe „Biologische Kybernetik“

Sandra Sieraad | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Türsteher im Gehirn
06.08.2020 | Institute of Science and Technology Austria

nachricht Peptide: Forschungs-Erfolg mit den kleinen Geschwistern der Proteine
06.08.2020 | Hochschule Coburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Projektabschluss ScanCut: Filigranere Steckverbinder dank Laserschneiden

Eine entscheidende Ergänzung zum Stanzen von Kontakten erarbeiteten Wissenschaftlerinnen und Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT. Die Aachener haben im Rahmen des EFRE-Forschungsprojekts ScanCut zusammen mit Industriepartnern aus Nordrhein-Westfalen ein hybrides Fertigungsverfahren zum Laserschneiden von dünnwandigen Metallbändern entwickelt, wodurch auch winzige Details von Kontaktteilen umweltfreundlich, hochpräzise und effizient gefertigt werden können.

Sie sind unscheinbar und winzig, trotzdem steht und fällt der Einsatz eines modernen Fahrzeugs mit ihnen: Die Rede ist von mehreren Tausend Steckverbindern im...

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: Elektrogesponnene Vliese mit gerichteten Fasern für die Sehnen- und Bänderrekostruktion

Sportunfälle und der demografische Wandel sorgen für eine gesteigerte Nachfrage an neuen Möglichkeiten zur Regeneration von Bändern und Sehnen. Eine Kooperation aus italienischen und deutschen Wissenschaftler*innen forschen gemeinsam an neuen Materialien, um dieser Nachfrage gerecht zu werden.

Dem Team ist es gelungen elektrogesponnene Vliese mit hochgerichteten Fasern zu generieren, die eine geeignete Basis für Ersatzmaterialien für Sehnen und...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: Neue Strategie gegen Osteoporose

Ein internationales Forschungsteam hat einen neuen Ansatzpunkt gefunden, über den man möglicherweise den Knochenabbau bei Osteoporose verringern und die Knochengesundheit erhalten kann.

Die Osteoporose ist die häufigste altersbedingte Knochenkrankheit. Weltweit sind hunderte Millionen Menschen davon betroffen. Es wird geschätzt, dass eine von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovationstage 2020 – digital

06.08.2020 | Veranstaltungen

Innovationen der Luftfracht: 5. Air Cargo Conference real und digital

04.08.2020 | Veranstaltungen

T-Shirts aus Holz, Möbel aus Popcorn – wie nachwachsende Rohstoffe fossile Ressourcen ersetzen können

30.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der Türsteher im Gehirn

06.08.2020 | Biowissenschaften Chemie

Kognitive Energiesysteme: Neues Kompetenzzentrum sucht Partner aus Wissenschaft und Wirtschaft

06.08.2020 | Energie und Elektrotechnik

Projektabschluss ScanCut: Filigranere Steckverbinder dank Laserschneiden

06.08.2020 | Verfahrenstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics