Ionische Flüssigkeiten vereinfachen Laserexperimente mit flüssigen Proben

Ein Laserpuls versetzt die gelösten Moleküle in einen angeregten elektronischen Zustand. Dann kann die Bindungsenergie der angeregten Elektronen gemessen werden. HZB

Nicht nur in der Natur finden zahlreiche Prozesse in Lösung statt, sondern auch in der Technik: Zum Beispiel bestehen organische Solarzellen aus gelösten Farbstoffmolekülen, und auch eine neue Klasse von Katalysatormaterialien besteht aus Nanopartikeln in gelöster Form. Um zu verstehen, welche Prozesse Licht in diesen Materialsystemen auslöst, eignet sich die Methode der zeitaufgelösten Photoelektronen-Spektroskopie (PES):

Ein genau abgestimmter Anregungs-Laserpuls versetzt die Probe in einen angeregten elektronischen Zustand, worauf sogenannte Abfrage-Laserpulse in kurzen Zeitabständen die Bindungsenergie der angeregten Elektronen abtasten. Daraus lässt sich rekonstruieren, wie die angeregten Elektronen in den Grundzustand zurückfallen.

Dies erlaubt Rückschlüsse auf die physikalischen, chemischen und biologischen Prozesse, die in diesen Materialien möglich sind. Allerdings sind solche Anregungs-Abfrage-Laserexperimente (Pump-Probe) nur im Ultrahochvakuum möglich. Für feste Proben ist die Methode gut etabliert, für flüssige Proben jedoch nicht. Flüssigkeiten verdampfen im Vakuum sofort. Sie konnten deshalb bislang nur mit aufwändigen Techniken wie dem Liquid-Micro Jet untersucht werden.

Ionische Flüssigkeiten verdampfen nicht

Nun hat eine Gruppe um Prof. Dr. Emad Aziz erstmals gezeigt, dass es eine einfachere Alternative gibt, um PES-Experimente auch an gelösten Proben durchzuführen: Sie ersetzten das organische Lösungsmittel durch eine so genannte ionische Flüssigkeit. Diese besteht aus organischen Molekülen, die sich untereinander durch ionische Kräfte (also wie ein Salz) vernetzen und bei Raumtemperatur flüssig sind. Ionische Flüssigkeiten verdampfen selbst im Ultrahochvakuum nicht.

Roter Farbstoff angeregt

Es gelang ihnen, einen roten Farbstoff(1), der als Prototyp für Farbstoffe in organischen Solarzellen gilt, in einer ionischen Flüssigkeit(2) zu lösen und mit Photoelektronen-Spektroskopie zu untersuchen. Dabei regten sie den Farbstoff mit einem Laserpuls an. In der ersten Pikosekunde (10-12s) danach tastete der Probe-Puls in 150 Einzelschritten die Bindungsenergie der angeregten Elektronen ab. Das aus diesen Daten erstellte Histogramm zeigt, über welche Zwischenzustände die angeregten Elektronen ihre Energie abgeben. Da die lichtinduzierten Prozesse in diesem Farbstoff bereits gut untersucht sind, konnten die Physiker ihre experimentellen Daten mit bereits vorliegenden Resultaten vergleichen.

Resultate stimmen überein

„Das alternative Lösungsmittel hat keinen Einfluss auf die ultraschnellen Prozesse: Alle Prozesse, die im Lauf dieser ersten Pikosekunde ablaufen, decken sich perfekt mit Resultaten aus Messungen aber auch mit Simulationen der Prozesse im konventionellen Lösungsmittel“, erklärt Mario Borgwardt, der die Experimente im Rahmen seiner Doktorarbeit durchgeführt hat. Ein wichtiges Ergebnis: Denn die schnellen Prozesse sind es, die zum Beispiel in einer Solarzelle zu Verlusten führen. Als Fazit hält Emad Aziz fest: „Ionische Flüssigkeiten sind eine gute Alternative zu herkömmlichen Lösungsmitteln, um Moleküle in Lösung mit zeitaufgelöster Photoelektronen-Spektroskopie zu analysieren.“

Ausblick: Untersuchungen an lichtreaktiven Katalysatoren

Nun will das Team auch Nanopartikel, insbesondere Nanodiamanten aus Kohlenstoff, in ionischen Flüssigkeiten lösen und mit PES untersuchen. In einem großen Kooperationsprojekt, DIACAT, an dem das HZB mit vielen Partnern arbeitet, testen sie die Eignung von Nanodiamanten als lichtreaktive Katalysatoren für die Erzeugung von solaren Brennstoffen. Die neue Methode kommt da gerade zur richtigen Zeit.

Zur Publikation: „Ultrafast excited states dynamics of [Ru(bpy)3]2+ dissolved in ionic liquids“, Mario Borgwardt, Martin Wilke, Igor Yu. Kiyan and Emad F. Aziz, Physical Chemistry Chemical Physics der Royal Academy of Chemistry (2016)
DOI: 10.1039/C6CP05655E

Anmerkung: Die Experimente fanden am Joint Lab für Ultraschnelle Dynamik in Lösungen und an Grenzflächen (JULiq) statt, das das HZB gemeinsam mit der Freien Universität zu Berlin betreibt. Perspektivisch baut das HZB am Campus Wannsee ein neues großes Laserlabor auf, das ebenfalls von Emad Aziz geleitet wird.

(1): Übergangsmetall-Komplex Ruthenium trisbipyridin [Ru(bpy)3]2+
(2): 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate [EMIM][TfO]

Kontakt:
Prof. Dr. Emad Aziz
E-Mail: emad.aziz@helmholtz-berlin.de

Mario Borgwardt
E-Mail: mario.borgwardt@helmholtz-berlin.de

Pressestelle HZB
Dr. Antonia Rötger
E-Mail: antonia.roetger@helmholtz-berlin.de

http://www.helmholtz-berlin.de/pubbin/news_seite?nid=14546&sprache=de&ty…
http://pubs.rsc.org/en/content/articlelanding/2016/cp/c6cp05655e#!divAbstract

Media Contact

Dr. Ina Helms Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer