Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Iodidsalze machen Biokatalysatoren für Brennstoffzellen stabil

14.02.2020

Entgegen theoretischen Vorhersagen inaktiviert Sauerstoff Biokatalysatoren für die Energieumwandlung auch unter einem Schutzfilm binnen kurzer Zeit. Ein Forschungsteam des Exzellenzclusters Resolv an der Ruhr-Universität Bochum (RUB) hat herausgefunden warum: Es bildet sich Wasserstoffperoxid am Schutzfilm. Die Zugabe von Iodidsalzen zum Elektrolyten kann das verhindern und die Lebensdauer der Katalysatoren erheblich verlängern.

Das Team um Prof. Dr. Nicolas Plumeré von Resolv, Dr. Erik Freier vom Leibniz-Institut für Analytische Wissenschaften Dortmund und Prof. Dr. Wolfgang Lubitz vom Max-Planck-Institut für chemische Energieumwandlung in Mülheim berichtet in Nature Communications vom 14. Februar 2020.


Alaa Oughli, Darren Buesen, Nicolas Plumeré (von links) wollen Biokatalysatoren langlebiger machen. © RUB, Marquard

RUB, Marquard. Das Bild darf nur für die Berichterstattung im Zusammenhang mit der Presseinformation "Iodidsalze machen Biokatalysatoren für Brennstoffzellen stabil" vom 14.2.2020 verwendet werden.

Binnen Sekunden deaktiviert

Biologische und bio-inspirierte Katalysatoren sind im Überfluss vorhanden, und ihre katalytische Leistung kommt der von Edelmetallkatalysatoren nahe. Trotzdem werden sie nicht flächendeckend für Energieumwandlungsprozesse eingesetzt. Der Grund dafür ist ihre Instabilität.

„Einige der aktivsten Katalysatoren für die Umwandlung kleiner Moleküle, die für nachhaltige Energiesysteme relevant sind, sind gegenüber Sauerstoff so empfindlich, dass sie binnen Sekunden vollständig deaktiviert werden, wenn sie damit in Kontakt kommen“, erklärt Nicolas Plumeré.

Unendlicher Schutz – bisher nur in der Theorie

Vor Kurzem hatte die Arbeitsgruppe entdeckt, dass redoxaktive Filme bioinspirierte und sogar Biokatalysatoren wie Hydrogenasen davor schützen können. Theoretische Modelle sagen voraus, dass der Schutz vor Sauerstoff unendlich lange anhalten sollte.

In Experimenten wirkt dieser Schutz jedoch bisher nur wenige Stunden. „Das steht im Widerspruch zu unseren theoretischen Berechnungen und lässt sich auch angesichts der Lebensdauer desselben Katalysators in einer sauerstofffreien Umgebung nicht erklären“, so Plumeré. Letztere beträgt bei konstantem Umsatz bis zu sechs Wochen.

Kombination von Methoden geht dem Problem auf den Grund

Die Forscher schlossen daraus, dass entweder der Mechanismus für den Schutz vor Sauerstoff noch nicht verstanden ist oder dass neben der Deaktivierung durch Sauerstoff zusätzliche schädliche Prozesse stattfinden. Um dem nachzugehen, kombinierten sie verschiedene Methoden, die es ihnen erlaubten, genau zu untersuchen, was in der schützenden Schicht passiert.

Die Kombination von konfokaler Fluoreszenzmikroskopie und kohärenter Anti-Stokes-Raman-Streuung, die im Labor von Erik Freier durchgeführt wurden, mit Elektrochemie für die Analyse der Schutzmatrix zeigten: Der Schutzprozess führt zu einer Ansammlung von Wasserstoffperoxid, die eine Schädigung des katalytischen Films fördert.

Wasserstoffperoxidbildung unterdrücken

Das Forschungsteam konnte nachweisen, dass die Aufspaltung von Wasserstoffperoxid mithilfe von Iodidsalzen die Halbwertszeit einer Hydrogenase für die Wasserstoffoxidation bei konstantem Umsatz auf bis zu eine Woche erhöht, selbst wenn konstant hohe Sauerstoffkonzentrationen darauf einwirken.

„Insgesamt bestätigen unsere Daten die Theorie, dass Redox-Filme sauerstoffempfindliche Katalysatoren völlig immun gegen die direkte Deaktivierung durch Sauerstoff machen“, fasst Plumeré zusammen. „Es ist aber sehr wichtig, auch die Wasserstoffperoxid-Produktion zu unterdrücken, um einen vollständigen Schutz vor oxidativem Stress zu erreichen.“

„Unsere Arbeit zeigt, dass die einfache Strategie der Zugabe von Iodidsalzen zum Elektrolyten ausreichen kann, um die Inaktivierungsraten von Biokatalysatoren deutlich zu senken“, so die Forscher.

Das ermöglicht nach ihrer Einschätzung die flächendeckende Umsetzung anderer elektrokatalytischer Prozesse in realen Anwendungen. Dazu gehören auch Energieumwandlungsprozesse wie die solare Brennstofferzeugung durch Kohlendioxidreduktion und die Elektrosynthese von Fein- oder Grundchemikalien wie Ammoniak.

Förderung

Die Arbeiten wurden gefördert von der Deutschen Forschungsgemeinschaft im Rahmen des Exzellenzclusters Ruhr Explores Solvation, Resolv (EXC-2033 – Projektnummer 390677874), und des Projekts Shields (PL 746/2-1) und vom European Research Council im Rahmen des Starting Grant 715900. Weitere Unterstützung kam von der Max-Planck-Gesellschaft, vom China Scholarship Council sowie vom Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen, dem Regierenden Bürgermeister von Berlin – inklusive Wissenschaft und Forschung und vom Bundesministerium für Bildung und Forschung sowie vom Leibniz-Research-Cluster (031A360E).

Originalveröffentlichung

Huaiguang Li, Ute Münchberg, Alaa A. Oughli, Darren Buesen, Wolfgang Lubitz, Erik Freier, Nicolas Plumeré: Suppressing hydrogen peroxide generation to achieve oxygen-insensitivity of a [NiFe] hydrogenase in redox active films, in: Nature Communications, 2020, DOI: 10.1038/s41467-020-14673-7, https://www.nature.com/articles/s41467-020-14673-7

Pressekontakt

Prof. Dr. Nicolas Plumeré
Forschungsgruppe Molekulare Nanostrukturen
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: +49 234 32 29434
E-Mail: nicolas.plumere@rub.de

Wissenschaftliche Ansprechpartner:

Prof. Dr. Nicolas Plumeré
Forschungsgruppe Molekulare Nanostrukturen
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: +49 234 32 29434
E-Mail: nicolas.plumere@rub.de

Originalpublikation:

Huaiguang Li, Ute Münchberg, Alaa A. Oughli, Darren Buesen, Wolfgang Lubitz, Erik Freier, Nicolas Plumeré: Suppressing hydrogen peroxide generation to achieve oxygen-insensitivity of a [NiFe] hydrogenase in redox active films, in: Nature Communications, 2020, DOI: 10.1038/s41467-020-14673-7, https://www.nature.com/articles/s41467-020-14673-7

Meike Drießen | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kurze Impulse mit großer Wirkung
14.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht „Kiss and Run“ zur Abfallverwertung in der Zelle
14.02.2020 | Universitätsmedizin Mannheim

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: Nanopartikel können Zellen verändern

Nanopartikel dringen leicht in Zellen ein. Wie sie sich dort verteilen und was sie bewirken, zeigen nun erstmals hochaufgelöste 3D-Mikroskopie-Aufnahmen an BESSY II. So reichern sich bestimmte Nanopartikel bevorzugt in bestimmten Organellen der Zelle an. Dadurch kann der Energieumsatz in der Zelle steigen. „Die Zelle sieht aus wie nach einem Marathonlauf, offensichtlich kostet es Energie, solche Nanopartikel aufzunehmen“, sagt Hauptautor James McNally.

Nanopartikel sind heute nicht nur in Kosmetikprodukten, sondern überall, in der Luft, im Wasser, im Boden und in der Nahrung. Weil sie so winzig sind, dringen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

ESO-Teleskop sieht die Oberfläche des schwächelnden Beteigeuze

14.02.2020 | Physik Astronomie

Iodidsalze machen Biokatalysatoren für Brennstoffzellen stabil

14.02.2020 | Biowissenschaften Chemie

Wie bioökonomisch optimierte Ressourcen- und Energiekreisläufe bei der Produktion nachhaltiger Lebensmittel helfen

14.02.2020 | Verfahrenstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics