Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Intelligentes“ Gel kontrolliert Frachtverkehr in der Zelle

17.08.2012
Sie helfen Wunden zu heilen oder machen Kontaktlinsen verträglich: Hydrogele aus vernetzten Polymeren, die ein Vielfaches ihres eigenen Gewichts an Wasser einlagern können.

"Intelligente" Hydrogele sind aber auch ein lebenswichtiger Bestandteil unserer Körperzellen, wie Wissenschaftler am MPI für biophysikalische Chemie herausfanden. Sie halten die Barriere zwischen Zellkern und Zytoplasma aufrecht. Als Bestandteil winziger Kernporen in der Zellkernhülle wirken sie wie hochselektive Siebe, die den Stoffaustausch kontrollieren.


Foto eines Hydrogels, gebildet aus FG-Domänen eines Kernporenproteins. Solche Hydrogele erfüllen in unseren Zellen eine lebenswichtige Aufgabe. Im zentralen Kanal der Kernpore bilden sie eine hochselektive Barriere, die den Stoffaustausch zwischen Zellkern und Zytoplasma kontrolliert. Bild: Aksana Labokha / Max-Planck-Institut für biophysikalische Chemie)

Die Erkenntnisse könnten dazu beitragen, neue Materialien für die Biotechnologie oder Medizintechnik zu entwickeln, die weit mehr können als nur Wasser zu speichern.

Der Zellkern – Speicher unseres Erbguts und Kommandozentrale der Zelle – ist streng bewacht. Seine Kernhülle verhindert, dass sich Moleküle unerwünscht Zutritt verschaffen oder den Kern unkontrolliert verlassen. Allerdings ist der Kern auf Proteine angewiesen, die im Zytoplasma hergestellt werden – sei es für das Kopieren von Genen oder die Reparatur von Schadstellen in unserem Erbgut. Umgekehrt könnte kein einziges Protein gebaut werden, ohne dass zuvor der dazugehörige "Bauplan" aus dem Kern in das Zytoplasma transportiert wird. Den nötigen Durchlass für diese Transportprozesse bilden rund 3000 winzige Kernporen in der Zellkernhülle, die man sich wie hochselektive Kanäle vorstellen kann.

Der Frachtverkehr, den sie bewältigen müssen, steht der Rushhour einer Großstadt in nichts nach: In einer menschlichen Zelle werden in jeder Minute mehrere Millionen Zellbausteine zwischen Zellkern und Zytoplasma hin und her transportiert. Dabei müssen die Kernporen akribisch unterscheiden, was den Kanal passieren darf und was nicht – und das innerhalb von Millisekunden.

"Diese enorme Effizienz hat etwas Faszinierendes und wir möchten verstehen, wie die Zelle diese erreicht", erklärt Dirk Görlich, Leiter der Abteilung Zelluläre Logistik am Göttinger Max-Planck-Institut für biophysikalische Chemie. Kein leichtes Unterfangen, denn so winzig die Kernporen auch im Mikroskop erscheinen, nach molekularen Maßstäben sind sie gigantisch. Eine einzelne Kernpore besteht aus rund 700 Proteinmolekülen oder etwa 20 Millionen Einzelatomen.

Hochselektive molekulare Siebe in der Kernpore

Die Göttinger Wissenschaftler konzentrieren sich daher in ihrer Forschung auf das Wesentliche: die Barriere im Kanal der Kernpore, die man sich wie ein molekulares Sieb vorstellen kann. Sie lässt kleinste Moleküle passieren, verhindert jedoch den Durchtritt größerer Zellbausteine. Was Zellforscher seit Jahrzehnten verblüfft, sind die "intelligenten" Eigenschaften dieser Barriere. Denn binden größere Zellbausteine an molekulare Shuttle-Proteine, geschieht etwas Überraschendes: Mithilfe des Shuttles können sie die Barriere überwinden. Seit Längerem ist bekannt, dass neben den Shuttle-Proteinen auch Kernporenproteine (Nups) für die Barriere gebraucht werden. Doch wie sie die hochselektive Barriere bilden und aufrechterhalten, war unter Wissenschaftlern bislang umstritten.

Görlichs Team postulierte dazu ein Modell: Besondere Bereiche bestimmter Kernporenproteine – sogenannte FG-Domänen – lagern sich zusammen und bilden ein dreidimensionales Sieb, in das Wasser eingelagert ist und das deshalb als Hydrogel bezeichnet wird. Bastian Hülsmann, Wissenschaftler in der Abteilung Zelluläre Logistik, ist es nun erstmals gelungen, die Funktionsweise der Barriere unter Bedingungen zu untersuchen, wie sie in lebenden Zellen herrschen.

Wichtige Dienste lieferte ihm dabei der afrikanische Krallenfrosch. Aus seinen Eiern stellte der Biochemiker einen Extrakt her, der alle Komponenten enthielt, um funktionsfähige Zellkerne zusammenzubauen. Im nächsten Schritt testete Hülsmann, welche Proteine der Kernpore für die Barriere gebraucht werden. Den drastischsten Effekt fand er, wenn den Zellkernen das Protein Nup98 fehlte. "Ohne Nup98 brach die Barriere der Kernpore völlig in sich zusammen", erklärt Hülsmann. Kernporen, die alles durchlassen ohne zu sortieren, entstanden auch, wenn der Biochemiker die FG-Domänen dieses Proteins so veränderte, dass sie nicht mehr in der Lage waren, sich zu vernetzen und ein Hydrogel zu bilden.

Gel bildet Barriere mit "intelligenten" Eigenschaften

Seine Versuche bestätigen, dass die Barriere wie von den Forschern postuliert aus einem "intelligenten" Hydrogel besteht. "Die Bildung des Hydrogels ist dabei direkt mit seiner verblüffenden Effizienz und Selektivität verbunden. Wir wissen schon länger, dass Shuttle-Proteine an FG-Domänen binden. Aber erst durch unsere Experimente verstehen wir, warum ihnen das beim Überwinden der Barriere hilft", sagt Görlich. Wo das Shuttle-Protein an die FG-Domäne bindet, lösen sich die Verbindungen benachbarter FG-Domänen. Einzelne Maschen im Gel werden so kurzzeitig geöffnet; das Shuttle samt Fracht kann passieren. Unmittelbar danach lagern sich die FG-Domänen erneut zusammen, die Maschen schließen sich wieder.

Die Experimente der Max-Planck-Forscher beantworten nicht nur eine fundamentale Frage in der Zellbiologie. Hydrogele sind bereits jetzt aus unserem Alltag kaum noch wegzudenken. Sie dienen als Superabsorber in Hygieneartikeln oder sind wichtiger Bestandteil von Kontaktlinsen und Wundauflagen. "ʼIntelligenteʼ Hydrogele, die mehr leisten als nur Wasser zu speichern, könnten Impulse für die Entwicklung ganz neuer Materialien liefern," so Zellbiologe Görlich. (cr/bh)

Dr. Carmen Rotte | Max-Planck-Institut
Weitere Informationen:
http://www.mpibpc.mpg.de/de/goerlich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Erste SARS-CoV-2-Genome aus Österreich veröffentlicht
03.04.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Die Mimik der Mäuse
03.04.2020 | Max-Planck-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Im Focus: Sensationsfund: Spuren eines Regenwaldes in der Westantarktis

90 Millionen Jahre alter Waldboden belegt unerwartet warmes Südpol-Klima in der Kreidezeit

Ein internationales Forscherteam unter Leitung von Geowissenschaftlern des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste SARS-CoV-2-Genome aus Österreich veröffentlicht

03.04.2020 | Biowissenschaften Chemie

Projekt »Lade-PV« gestartet: Fahrzeugintegrierte PV für Elektro-Nutzfahrzeuge

03.04.2020 | Energie und Elektrotechnik

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics