Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Inneres «Uhrwerk» taktet Zellteilung bei Bakterien

10.02.2020

Forscher am Biozentrum der Universität Basel haben ein «Uhrwerk» entdeckt, welches die Zellteilung in Bakterien steuert. In zwei Publikationen in «Nature Communications» und «PNAS» berichten sie, wie ein kleines Signalmolekül dieses «Uhrwerk» steuert und so der Zelle vermittelt, wann der richtige Zeitpunkt ist, sich zu vermehren.

Die Fähigkeit von Krankheitskeimen sich in ihrem Wirt zu vermehren, ist entscheidend für die Ausbreitung von Infektionen. Wie schnell sich Bakterien teilen, hängt von ihren Lebensbedingungen ab.


Das Signalmolekül c-di-GMP steuert Zellteilung bei Caulobacter crescentus.

Bild: Universität Basel, Swiss Nanoscience Institute/Biozentrum

Bei widrigen Verhältnissen wie zum Beispiel Nährstoffmangel vermehren sie sich deutlich langsamer, weil sie nach der Zellteilung eine Pause einschalten. Doch woher wissen Bakterien eigentlich, ob der Zeitpunkt für die nächste Teilung bereits gekommen ist?

Das Team von Prof. Dr. Urs Jenal vom Biozentrum der Universität Basel hat nun im Modellbakterium Caulobacter crescentus einen zentralen Schalter für die Vermehrung gefunden: das Signalmolekül c-di-GMP. In der Zeitschrift Nature Communications berichten die Forschenden, dass dieses Molekül ein «Uhrwerk» in Gang setzt, welches bestimmt, ob das Bakterium sich vermehrt.

Signalmolekül steuert «Uhrwerk» in Bakterien

Bislang war weitgehend unklar, wie lange eine Zelle nach der Teilung pausiert und wie sie sich für die nächste Zellteilung entscheidet. Hierbei spielt das Signalmolekül c-di-eine entscheidende Rolle. «Der Anstieg des c-di-GMP-Spiegels setzt nach und nach einzelne Rädchen eines Uhrwerks in der Zelle in Bewegung», erklärt Jenal.

«Diese nacheinander geschalteten Räder sind Enzyme, sogenannte Kinasen. Sie bereiten die Zelle darauf vor, von der Ruhephase in die Phase der Zellteilung überzugehen.»

Enzyme reagieren auf c-di-GMP-Spiegel

Bei günstigen Lebensbedingungen beginnt die Zelle das Signalmolekül zu produzieren – von da an tickt die Uhr. Ein anfänglich niedriger c-di-GMP-Spiegel aktiviert zunächst eine erste Kinase. Diese schaltet über 100 Gene an, welche die Zelle in Richtung Teilung vorantreiben und die Produktion von c-di-GMP weiter hochfahren.

Ein hoher c-di-GMP-Spiegel bringt schliesslich das letzte Rädchen im Uhrwerk, ebenfalls eine Kinase, zum Laufen. «Damit entscheidet sich die Zelle endgültig dafür ihre DNA zu verdoppeln und die Teilung einzuleiten», sagt Jenal «Gleichzeitig wird die Gruppe von Genen wieder abgeschaltet, denn diese sind nur in der Übergangsphase wichtig.»

Einblicke in Enzym-Aktivierung durch c-di-GMP

In einer fast zeitgleich in PNAS erschienen Arbeit beschreiben Wissenschaftler unter der Leitung von Prof. Dr. Tilman Schirmer vom Biozentrum der Universität Basel, wie c-di-GMP das erste Rädchen der Zell-Uhr auf atomarer Ebene in Gang setzt.

Demnach besitzt die Kinase bewegliche Abschnitte, die so lange fixiert sind, bis c-di-GMP andockt. Durch die Bindung des Signalmoleküls werden diese Abschnitte freigegeben und die Kinase aktiviert.

«Mit unserer Arbeit konnten wir ein neues Wirkprinzip für c-di-GMP zeigen», sagt Schirmer. «Die vielfältigen ‹Strategien› mit denen das Signalmolekül biochemische Vorgänge steuert, faszinieren uns immer wieder.»

Universelles Prinzip bei Vermehrung von Bakterien

Dass Bakterien mithilfe von c-di-GMP ihre Vermehrung zeitlich präzise steuern, so vermuten die Forscher, scheint ein universeller Mechanismus zu sein. Dieser ermöglicht es ihnen, Wachstum und Entwicklung genau aufeinander abzustimmen. Die Aufklärung dieser neuartigen Mechanismen trägt dazu bei, das Wachstum von Krankheitskeimen besser zu verstehen.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Urs Jenal, Universität Basel, Biozentrum, Tel. +41 61 207 21 35, E-Mail: urs.jenal@unibas.ch

Prof. Dr. Tilman Schirmer, Universität Basel, Biozentrum, Tel. +41 61 207 20 89, E-Mail: tilman.schirmer@unibas.ch

Originalpublikation:

Andreas Kaczmarczyk, Antje M. Hempel, Christoph von Arx, Raphael Böhm, Badri N. Dubey, Jutta Nesper, Tilman Schirmer, Sebastian Hiller and Urs Jenal
Precise timing of transcription by c-di-GMP coordinates cell cycle and morphogenesis in Caulobacter
Nature Communications (2020), doi: 10.1038/s41467-020-14585-6
https://doi.org/10.1038/s41467-020-14585-6

Badri N. Dubey, Elia Agustoni, Raphael Böhm, Andreas Kaczmarczyk, Francesca Mangia, Christoph von Arx, Urs Jenal, Sebastian Hiller, Iván Plaza-Menacho, and Tilman Schirmer
Hybrid histidine kinase activation by cyclic di-GMP–mediated domain liberation
PNAS (2020), doi: 10.1073/pnas.1911427117
https://doi.org/10.1073/pnas.1911427117

Dr. Katrin Bühler | Universität Basel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Trockenstress – Biologen entschlüsseln SOS-Signal von Pflanzen
27.03.2020 | Universität Hohenheim

nachricht Der Venusfliegenfallen-Effekt: Neue Studie zeigt Fortschritte der Forschung an Immunproteinen
26.03.2020 | Jacobs University Bremen gGmbH

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nachwuchswissenschaftler der Universität Rostock erfinden einen Trichter für Lichtteilchen

Physiker der Arbeitsgruppe von Professor Alexander Szameit an der Universität Rostock ist es in Zusammenarbeit mit Kollegen von der Universität Würzburg gelungen, einen „Trichter für Licht“ zu entwickeln, der bisher nicht geahnte Möglichkeiten zur Entwicklung von hypersensiblen Sensoren und neuen Technologien in der Informations- und Kommunikationstechnologie eröffnet. Die Forschungsergebnisse wurden jüngst im renommierten Fachblatt Science veröffentlicht.

Der Rostocker Physikprofessor Alexander Szameit befasst sich seit seinem Studium mit den quantenoptischen Eigenschaften von Licht und seiner Wechselwirkung mit...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Künstliche Intelligenz findet das optimale Werkstoffrezept

Die möglichen Eigenschaften nanostrukturierter Schichten sind zahllos – wie aber ohne langes Experimentieren die optimale finden? Ein Team der Materialforschung der Ruhr-Universität Bochum (RUB) hat eine Abkürzung ausprobiert: Mit einem Machine-Learning-Algorithmus konnten die Forscher die strukturellen Eigenschaften einer solchen Schicht zuverlässig vorhersagen. Sie berichten in der neuen Fachzeitschrift „Communications Materials“ vom 26. März 2020.

Porös oder dicht, Säulen oder Fasern

Im Focus: Erdbeben auf Island über Telefonglasfaserkabel registriert

Am 12. März 2020, 10.26 Uhr, ereignete sich in Südwestisland, ca. 5 km nordöstlich von Grindavík, ein Erdbeben mit einer Magnitude von 4.7, während eines längeren Erdbebenschwarms. Wissenschaftlerinnen und Wissenschaftler des Deutschen GeoForschungsZentrums GFZ haben jetzt dort ein neues Verfahren zur Überwachung des Untergrunds mithilfe von Telefonglasfaserkabeln getestet.

Ein von GFZ-Forschenden aus den Sektionen „Oberflächennahe Geophysik“ und „Geoenergie“ durchgeführtes Online-Monitoring, das Glasfaserkabel des isländischen...

Im Focus: Quantenoptiker zwingen Lichtteilchen, sich wie Elektronen zu verhalten

Auf der Basis theoretischer Überlegungen von Physikern der Universität Greifswald ist es Mitarbeitern der AG Festkörperoptik um Professor Alexander Szameit an der Universität Rostock gelungen, photonische topologische Isolatoren als Lichtwellenleiter zu realisieren, in denen sich Photonen wie Elektronen verhalten, und somit fermionische Eigenschaften zeigen. Ihre Entdeckung wurde jüngst im renommierten Fachblatt „Nature Materials“ veröffentlicht.

Dass es elektronische topologische Isolatoren gibt – Festkörper die im Innern den elektrischen Strom nicht leiten, dafür aber umso besser über die Oberfläche –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

Wichtigste internationale Konferenz zu Learning Analytics findet statt – komplett online

23.03.2020 | Veranstaltungen

UN World Water Day 22 March: Water and climate change - How cities and their inhabitants can counter the consequences

17.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltweit einzigartig: Neue Anlage zur Untersuchung von biogener Schwefelsäurekorrosion in Betrieb

27.03.2020 | Architektur Bauwesen

Schutzmasken aus dem 3D-Drucker

27.03.2020 | Materialwissenschaften

Nachwuchswissenschaftler der Universität Rostock erfinden einen Trichter für Lichtteilchen

27.03.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics