Innere Uhr gibt den Kraftwerken der Zellen den Rhythmus vor

Der rund 24 Stunden lange zirkadianische Rhythmus beeinflusst den Energiestoffwechsel von Mitochondrien. Illustration: Universität Basel

In unserem Körper ticken unzählige, genetisch gesteuerte innere Uhren, zum Beispiel in den Zellen der Leber, der Nieren, und des Herzens. Sie leiten unter anderem viele Stoffwechselprozesse in die Wege, damit diese zur optimalen Tageszeit ablaufen.

Eine wichtige Rolle bei diesen Prozessen in den Zellen spielen die Mitochondrien – kleine Organellen, die in fast jeder Zelle vorkommen und sie mit Energie versorgen. Unklar war bislang, wie der rund 24 Stunden lange zirkadianische Rhythmus den Energiestoffwechsel genau reguliert.

Teilungsprotein gibt den Rhythmus vor

In den meisten Zellen verbinden sich Mitochondrien zu einem sich ständig wandelnden Netzwerk, das sich an verschiedene Bedingungen anpassen kann. So können Mitochondrien miteinander verschmelzen und sich auch wieder teilen. Gerät diese Dynamik aus Fusions- und Teilungsprozessen aus dem Gleichgewicht, kann dies zu Krankheiten führen.

Wie das mitochondriale Netzwerk genau mit der inneren biologischen Uhr zusammenhängt, haben Forscher nun in vitro und anhand von Mausmodellen untersucht, die ein defektes Uhr-Gen aufwiesen oder bei denen die mitochondriale Teilung gestört war.

So konnten sie zeigen, dass die Abfolgen von mitochondrialen Teilung und Fusion durch das Teilungsprotein Drp1 gesteuert wird, das wiederum von einer inneren biologischen Uhr getaktet wird. Dieser Rhythmus bestimmt wesentlich, wann die Mitochondrien wieviel Energie bereitstellen können.

«Die Tageszeit bestimmt die Gestalt des mitochondrialen Netzwerks, und dieses beeinflusst wiederum die Energiekapazität der Zellen», fasst Studienleiterin Prof. Dr. Anne Eckert von der Transfakultären Forschungsplattform Molecular and Cognitive Neurosciences MCN der Universität Basel die Resultate zusammen.

Wechselwirkung zwischen innerer Uhr und Energieproduktion

Die Forscher konnten zudem zeigen, dass das mitochondriale Netzwerk seinen Rhythmus verliert, wenn die zirkadiane Uhr gestört ist, wodurch die Energieproduktion in der Zelle abfällt.

Ähnlich führt eine pharmakologische oder genetische Hemmung des Teilungsprotein DRP1 zu einem Verlust der Rhythmik in der Energieproduktion, was seinerseits den Takt der inneren Uhr beeinträchtigt.

Diese Befunde können bei der Entwicklung von therapeutischen Strategien eine Rolle spielen, zum Beispiel für Erkrankungen, bei denen sowohl Störungen der inneren Uhr als auch eine beeinträchtigte mitochondriale Funktion beschrieben sind wie zum Beispiel bei der Alzheimerkrankheit.

An der Studie, die im Fachmagazin «Cell Metabolism» erschienen ist, waren unter anderem Forschende der Universität Basel, der Universität Zürich und der Universitären Psychiatrischen Kliniken Basel beteiligt.

Originalbeitrag

Karen Schmitt, Amandine Grimm, Robert Dallmann, Bjoern Oettinghaus, Lisa Michelle Restelli, Melissa Witzig, Naotada Ishihara, Katsuyoshi Mihara, Jürgen A. Ripperger, Urs Albrecht, Stephan Frank, Steven A. Brown, Anne Eckert
Circadian Control of DRP1 Activity Regulates Mitochondrial Dynamics and Bioenergetics
Cell Metabolism (2018), doi: 10.1016/j.cmet.2018.01.011

Weitere Auskünfte

Prof. Dr. Anne Eckert, Universität Basel, Transfakultäre Forschungsplattform Molecular and Cognitive Neurosciences / Universitäre Psychiatrische Kliniken Basel, Tel. +41 61 325 5487, E-Mail: anne.eckert@unibas.ch

https://www.unibas.ch/de/Aktuell/News/Uni-Research/Innere-Uhr-gibt-den-Kraftwerk…

Media Contact

Cornelia Niggli Universität Basel

Weitere Informationen:

http://www.unibas.ch

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer