Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Individualismus bei Bakterien: Eine Strategie zum Überleben von schwierigen Zeiten

10.05.2016

Bakterium ist nicht gleich Bakterium – selbst wenn sie genetisch genau gleich sind. Eine neue Studie zeigt, unter welchen Bedingungen bei Bakterien Individualisten entstehen und wie diese dann das Wachstum der ganzen Gruppe in schwierigen Zeiten aufrechterhalten.

Egal ob Mensch oder Bakterium – unsere Umweltbedingungen bestimmen, wie wir uns entwickeln können. Dabei gibt es zwei grundlegende Probleme: Erstens: Welche Ressourcen stehen mir zur Verfügung, um zu überleben und zu wachsen? Und zweitens: Was mache ich, wenn sich die Umweltbedingungen unerwartet verändern?


NanoSIMS-Aufnahme von K. oxytoca. Die unterschiedliche Färbung zeigt, dass die genetisch gleichen Zellen einer Population unterschiedlich viel elementaren Stickstoff in die Zellmasse einbauen.

Frank Schreiber


Die Bakterienkulturen von K. oxytoca wurden in sogenannten Chemostaten mit verschiedenen Konzentrationen von Ammonium und mit einem Überschuss an elementarem, gasförmigem Stickstoff versorgt.

Frank Schreiber

Eine Forschergruppe des Max-Planck-Instituts für Marine Mikrobiologie in Bremen, der Eawag, der ETH Zürich und der EPFL Lausanne hat nun herausgefunden, dass Bakterienpopulationen besonders viele Individualisten hervorbringen, wenn es nur begrenzt Nährstoffe gibt.

Das bedeutet, dass diese Bakterienpopulationen sich nicht nur – wie meist angenommen – im Nachhinein an veränderte Umweltbedingungen anpassen. Die Individualisten können auch schon im Vorhinein auf solche Veränderungen vorbereitet sein.

Mangel befördert Vielfalt, Vielfalt macht flexibel

In einer aktuellen Veröffentlichung in der Zeitschrift Nature Microbiology zeigen die Forscher um Frank Schreiber, dass einzelne Zellen in Bakteriengruppen, die unter Nährstoffmangel leiden, sehr unterschiedlich reagieren können. Obwohl alle Zellen einer solchen Gruppe genetisch genau gleich sind, gehen sie ganz unterschiedlich mit den Nährstoffen in ihrer Umgebung um.

Konkret: Bakterien der Art Klebsiella oxytoca nehmen bevorzugt Stickstoff in Form von Ammonium (NH4+) auf, denn das kostet vergleichsweise wenig Energie. Wenn nicht genügend Ammonium für alle vorhanden ist, beziehen einige Zellen der Gruppe ihren Stickstoff durch Stickstofffixierung aus elementarem Stickstoff (N2), obwohl das deutlich aufwändiger ist.

Geht nun das Ammonium plötzlich ganz aus, sind diese Zellen auf den Mangel gut vorbereitet. Auch wenn einzelne Zellen leiden, kann die Gruppe als Ganze weiterwachsen. „Obwohl alle Individuen der Gruppe genetisch identisch sind und den gleichen Umweltbedingungen ausgesetzt waren, sind die einzelnen Zellen verschieden“, so Schreiber.

Modernste Methoden erlauben detaillierte Einblicke

Diese bemerkenswerten Unterschiede zwischen den Bakterien konnten Schreiber und seine Kollegen nur entlarven, indem sie den einzelnen Zellen ganz nah auf den Pelz rückten. „Wir mussten die Nahrungsaufnahme einzelner Bakterienzellen messen – obwohl die nur 2 μm groß sind“, erklärt Schreiber die methodische Herausforderung.

„Üblicherweise werden in der Mikrobiologie nur die kollektiven Eigenschaften in Populationen von mehreren Millionen oder gar Milliarden von Zellen zusammen gemessen. Nur durch die enge Zusammenarbeit, die vielfältige Expertise und die technische Ausstattung der beteiligten Forschergruppen war es möglich, so ins Detail zu gehen.“

Auch Bakterien sind Individualisten

Die vorliegende Studie belegt, wie wichtig Individualität – bei Bakterien und im Allgemeinen – in einer veränderlichen Umwelt sein kann. Unterschiede zwischen Individuen verleihen der ganzen Gruppe neue Eigenschaften und erlauben ihr so, mit schwierigen Umweltbedingungen umzugehen. „Dies deutet darauf hin, dass biologische Vielfalt nicht nur im Sinn der Artenvielfalt von Tieren und Pflanzen, sondern auch auf dem Niveau einzelner Individuen bedeutsam ist“, sagt Schreiber.

In einem nächsten Schritt wollen Schreiber und seine Kollegen nun untersuchen, ob solch individuelles Verhalten von einzelnen Bakterienzellen auch in natürlichen Lebensräumen eine wichtige Rolle spielt.

Originalveröffentlichung

Phenotypic heterogeneity driven by nutrient limitation promotes 
grow th in fluctuating environments. Frank Schreiber, Sten Littmann, Gaute Lavik, Stéphane Escrig, Anders Meibom, Marcel Kuypers, Martin Ackermann.
Nature Microbiology, http://doi.org/10.1038/NMICROBIOL.2016.55

Rückfragen bitte an

Frank Schreiber / +49 30 8104-1414/ frank.Schreiber@bam.de
Marcel Kuypers / +49 421 2028 602 / mkuypers@mpi-bremen.de
Martin Ackermann / +41 58 765 5122 / martin.ackermann@eawag.ch

oder an die Pressesprecher

Dr. Fanni Aspetsberger / +49 421 2028 947 / presse@mpi-bremen.de
Andri Bryner / +41 58 765 51 04 / andri.bryner@ewag.ch

Beteiligte Institute:

Max-Planck-Institut für Marine Mikrobiologie, Bremen, Deutschland
École polytechnique fédérale de Lausanne EPFL, Lausanne, Schweiz
ETH Zürich, Schweiz
Eawag, Dübendorf und Kastanienbaum, Schweiz

Weitere Informationen:

http://www.mpi-bremen.de

Dr. Manfred Schloesser | Max-Planck-Institut für marine Mikrobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Die wahrscheinlich kleinsten Stabmagnete der Welt
17.10.2019 | Friedrich-Schiller-Universität Jena

nachricht Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination
17.10.2019 | Universität Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Dehnbare Elektronik: Neues Verfahren vereinfacht Herstellung funktionaler Prototypen

17.10.2019 | Materialwissenschaften

Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED

17.10.2019 | Physik Astronomie

Dank Hochfrequenz wird Kommunikation ins All möglich

17.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics