Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Individualismus bei Bakterien: Eine Strategie zum Überleben von schwierigen Zeiten

10.05.2016

Bakterium ist nicht gleich Bakterium – selbst wenn sie genetisch genau gleich sind. Eine neue Studie zeigt, unter welchen Bedingungen bei Bakterien Individualisten entstehen und wie diese dann das Wachstum der ganzen Gruppe in schwierigen Zeiten aufrechterhalten.

Egal ob Mensch oder Bakterium – unsere Umweltbedingungen bestimmen, wie wir uns entwickeln können. Dabei gibt es zwei grundlegende Probleme: Erstens: Welche Ressourcen stehen mir zur Verfügung, um zu überleben und zu wachsen? Und zweitens: Was mache ich, wenn sich die Umweltbedingungen unerwartet verändern?


NanoSIMS-Aufnahme von K. oxytoca. Die unterschiedliche Färbung zeigt, dass die genetisch gleichen Zellen einer Population unterschiedlich viel elementaren Stickstoff in die Zellmasse einbauen.

Frank Schreiber


Die Bakterienkulturen von K. oxytoca wurden in sogenannten Chemostaten mit verschiedenen Konzentrationen von Ammonium und mit einem Überschuss an elementarem, gasförmigem Stickstoff versorgt.

Frank Schreiber

Eine Forschergruppe des Max-Planck-Instituts für Marine Mikrobiologie in Bremen, der Eawag, der ETH Zürich und der EPFL Lausanne hat nun herausgefunden, dass Bakterienpopulationen besonders viele Individualisten hervorbringen, wenn es nur begrenzt Nährstoffe gibt.

Das bedeutet, dass diese Bakterienpopulationen sich nicht nur – wie meist angenommen – im Nachhinein an veränderte Umweltbedingungen anpassen. Die Individualisten können auch schon im Vorhinein auf solche Veränderungen vorbereitet sein.

Mangel befördert Vielfalt, Vielfalt macht flexibel

In einer aktuellen Veröffentlichung in der Zeitschrift Nature Microbiology zeigen die Forscher um Frank Schreiber, dass einzelne Zellen in Bakteriengruppen, die unter Nährstoffmangel leiden, sehr unterschiedlich reagieren können. Obwohl alle Zellen einer solchen Gruppe genetisch genau gleich sind, gehen sie ganz unterschiedlich mit den Nährstoffen in ihrer Umgebung um.

Konkret: Bakterien der Art Klebsiella oxytoca nehmen bevorzugt Stickstoff in Form von Ammonium (NH4+) auf, denn das kostet vergleichsweise wenig Energie. Wenn nicht genügend Ammonium für alle vorhanden ist, beziehen einige Zellen der Gruppe ihren Stickstoff durch Stickstofffixierung aus elementarem Stickstoff (N2), obwohl das deutlich aufwändiger ist.

Geht nun das Ammonium plötzlich ganz aus, sind diese Zellen auf den Mangel gut vorbereitet. Auch wenn einzelne Zellen leiden, kann die Gruppe als Ganze weiterwachsen. „Obwohl alle Individuen der Gruppe genetisch identisch sind und den gleichen Umweltbedingungen ausgesetzt waren, sind die einzelnen Zellen verschieden“, so Schreiber.

Modernste Methoden erlauben detaillierte Einblicke

Diese bemerkenswerten Unterschiede zwischen den Bakterien konnten Schreiber und seine Kollegen nur entlarven, indem sie den einzelnen Zellen ganz nah auf den Pelz rückten. „Wir mussten die Nahrungsaufnahme einzelner Bakterienzellen messen – obwohl die nur 2 μm groß sind“, erklärt Schreiber die methodische Herausforderung.

„Üblicherweise werden in der Mikrobiologie nur die kollektiven Eigenschaften in Populationen von mehreren Millionen oder gar Milliarden von Zellen zusammen gemessen. Nur durch die enge Zusammenarbeit, die vielfältige Expertise und die technische Ausstattung der beteiligten Forschergruppen war es möglich, so ins Detail zu gehen.“

Auch Bakterien sind Individualisten

Die vorliegende Studie belegt, wie wichtig Individualität – bei Bakterien und im Allgemeinen – in einer veränderlichen Umwelt sein kann. Unterschiede zwischen Individuen verleihen der ganzen Gruppe neue Eigenschaften und erlauben ihr so, mit schwierigen Umweltbedingungen umzugehen. „Dies deutet darauf hin, dass biologische Vielfalt nicht nur im Sinn der Artenvielfalt von Tieren und Pflanzen, sondern auch auf dem Niveau einzelner Individuen bedeutsam ist“, sagt Schreiber.

In einem nächsten Schritt wollen Schreiber und seine Kollegen nun untersuchen, ob solch individuelles Verhalten von einzelnen Bakterienzellen auch in natürlichen Lebensräumen eine wichtige Rolle spielt.

Originalveröffentlichung

Phenotypic heterogeneity driven by nutrient limitation promotes 
grow th in fluctuating environments. Frank Schreiber, Sten Littmann, Gaute Lavik, Stéphane Escrig, Anders Meibom, Marcel Kuypers, Martin Ackermann.
Nature Microbiology, http://doi.org/10.1038/NMICROBIOL.2016.55

Rückfragen bitte an

Frank Schreiber / +49 30 8104-1414/ frank.Schreiber@bam.de
Marcel Kuypers / +49 421 2028 602 / mkuypers@mpi-bremen.de
Martin Ackermann / +41 58 765 5122 / martin.ackermann@eawag.ch

oder an die Pressesprecher

Dr. Fanni Aspetsberger / +49 421 2028 947 / presse@mpi-bremen.de
Andri Bryner / +41 58 765 51 04 / andri.bryner@ewag.ch

Beteiligte Institute:

Max-Planck-Institut für Marine Mikrobiologie, Bremen, Deutschland
École polytechnique fédérale de Lausanne EPFL, Lausanne, Schweiz
ETH Zürich, Schweiz
Eawag, Dübendorf und Kastanienbaum, Schweiz

Weitere Informationen:

http://www.mpi-bremen.de

Dr. Manfred Schloesser | Max-Planck-Institut für marine Mikrobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sich vermehren oder sich nicht vermehren
22.03.2019 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Ketten aus Stickstoff direkt erzeugt
22.03.2019 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Zähmung der Lichtschraube

Wissenschaftler vom DESY und MPSD erzeugen in Festkörpern hohe-Harmonische Lichtpulse mit geregeltem Polarisationszustand, indem sie sich die Kristallsymmetrie und attosekundenschnelle Elektronendynamik zunutze machen. Die neu etablierte Technik könnte faszinierende Anwendungen in der ultraschnellen Petahertz-Elektronik und in spektroskopischen Untersuchungen neuartiger Quantenmaterialien finden.

Der nichtlineare Prozess der Erzeugung hoher Harmonischer (HHG) in Gasen ist einer der Grundsteine der Attosekundenwissenschaft (eine Attosekunde ist ein...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetische Mikroboote

Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Goldkugel im goldenen Käfig

„Goldenes Fulleren“: Liganden-geschützter Nanocluster aus 32 Goldatomen

Forschern ist es gelungen, eine winzige Struktur aus 32 Goldatomen zu synthetisieren. Dieser Nanocluster hat einen Kern aus 12 Goldatomen, der von einer Schale...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung 2019 für Nuklearmedizin in Bremen

21.03.2019 | Veranstaltungen

6. Magdeburger Brand- und Explosionsschutztage vom 25. bis 26.3. 2019

21.03.2019 | Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zähmung der Lichtschraube

22.03.2019 | Physik Astronomie

Saarbrücker Forscher erleichtern durch Open Source-Software den Durchblick bei Massen-Sensordaten

22.03.2019 | HANNOVER MESSE

Ketten aus Stickstoff direkt erzeugt

22.03.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics