Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

In Form bleiben

17.08.2018

3D-Analyse des Netzhautgewebes zeigt, wie Organe während des Wachstums ihre Form bewahren

Bereits während der frühen Entwicklung eines Embryos nehmen viele Gewebe und Organe ihre endgültige Form an. Diese muss im Laufe des Wachstums eines Organismus beibehalten werden. Da die richtige Form eines Gewebes oft entscheidend ist für dessen Funktion, ist es wichtig zu verstehen, wie diese Form während des Wachstums unverändert bleibt.


Zebrafisch-Netzhäute (grau) und Linsen (blau) in verschiedenen Entwicklungsstadien. Das Netzhautwachstum wird durch rechtzeitige gewebeweite Verlängerung von Zellen ermöglicht.

Matejčić / Norden, MPI-CBG

Bislang ist über das Zusammenspiel von Zellen im Gewebe, welches das Wachstum bei gleichzeitiger Formstabilität ermöglicht, noch wenig bekannt. Wissenschaftler des Max-Planck-Instituts für molekulare Zellbiologie und Genetik (MPI-CBG) in Dresden haben nun gemeinsam mit Guillaume Salbreux vom Francis-Crick-Institut eine 3D-Studie über das Wachstum des Auges veröffentlicht.

Sie konnten zeigen, dass langgestreckte Zellen der Schlüssel dazu sind, dass das Netzhautgewebe eines Zebrafisches während des Wachstums seine Form beibehält. Dieses Konzept könnte auch auf andere Organismen zutreffen. Die Forscher präsentieren ihre Ergebnisse in der Fachzeitschrift PLOS Biology.

Eine wichtige Frage in der Biologie ist, wie sich Gewebe während der Entwicklung eines Organismus richtig formen und wachsen. Bei vielen Geweben bildet sich die Form sehr früh in der Entwicklung aus. Daher muss diese beibehalten werden, wenn das Gewebe wächst, ähnlich einem Ballon, dessen Form unverändert bleibt, wenn er aufgeblasen wird. Viele menschliche Gewebe, wie die Nase oder das Auge erlangen früh in der Entwicklung ihre Form.

Da solche Form eines Gewebes oder Organs oft entscheidend für dessen Funktion ist, ist es wichtig zu verstehen, wie zum Beispiel die winzige Nase eines Babys ihre Form während bis zum Erwachsenenalter bewahren kann. Bis jetzt ist noch wenig über das Wechselspiel von Zellen und Gewebe bekannt, welches diesem koordinierten Wachstum zugrunde liegt.

Bisherige Untersuchen betrachteten das Wachstum und die Form von Geweben vor allem zweidimensional. Eine dreidimensionale Betrachtung des Gewebewachstums ist allerdings notwendig, um Form und Größe vollständig zu erfassen.

Das Team um Forschungsgruppenleiterin Dr. Caren Norden am MPI-CBG in Zusammenarbeit mit Guillaume Salbreux, ehemals Mitarbeiter des Max-Planck-Instituts für Physik komplexer Systeme in Dresden und jetzt am Francis-Crick-Institut, machte sich auf die Suche nach Antworten auf diese wichtigen und spannenden Fragen. Dazu nutzten die Forscher und Forscherinnen die außergewöhnlich guten Bildgebungsverfahren, die es für den sich entwickelnden Zebrafisch bereits gibt.

Ein für diese Studie besonders geeignetes Gewebe ist das entstehende Auge, ein wichtiger Teil des zentralen Nervensystems, das schon früh in der Entwicklung eine Art Schale mit glatter Oberfläche bildet. Später bildet dieses entsteht hieraus, unter Beibehaltung der Form, ein Nervenzellgewebe, das die Lichtimpulse vom Auge an das Gehirn weiterleitet.

Für die Netzhaut ist es daher besonders wichtig, dass die Form während der Entwicklung beibehalten wird, damit das Licht gleichmäßig durch die Netzhaut dringen kann. Die Erstautorin der Studie, Dr. Marija Matejčić, erklärt: „Wir konnten zeigen, dass Zellen, die die Netzhaut bilden, sich in die Länge strecken müssen, um die Form des Gewebes beizubehalten, während es wächst. Die Netzhautzellen verlängern sich alle zusammen, nachdem sie gleichzeitig eine innere Komponente im Gewebe verteilt haben. Auf diese Weise bleiben die Zellen und das Gewebe in Bestform!“

Das Protein Aktin spielt dabei eine entscheidende Rolle: Eine Umverteilung von Aktin zum richtigen Zeitpunkt sorgt dafür, dass sich Zellen verlängern können. Wird die Aktin-Umverteilung dagegen blockiert, nimmt können sich Zellen nicht in die Länge strecken, was zu einem gefalteten Gewebe ähnlich einem geknültten Papier des anstatt sonst glatten Netzhautgewebes führt. Die Folge ist, dass das Auge nicht mehr korrekt funktioniert.

„Diese Studie ist ein wichtiges Beispiel dafür, wie das richtige Wachstum eines Gewebes durch die Veränderung der Zellen und deren Form erreicht wird“, sagt Dr. Caren Norden, die die Studie leitete. Das Konzept könnte auch bei anderen Organismen oder den immer beliebter werdenden Organoiden, angewendet werden. Dr. Norden fügt hinzu: „Die nächste Herausforderung besteht darin, die Untersuchungen auf Wachstumsphänomene in Organoidsystemen, das sind vereinfachte künstliche Miniatur-Organe, einschließlich menschlicher Organoide, auszudehnen. Das wird enorm zum Verständnis von Entwicklungsprogrammen, die in Organismen ablaufen beitragen.“

Wissenschaftliche Ansprechpartner:

Caren Norden
+49 (0) 351 210 2802
norden@mpi-cbg.de

Originalpublikation:

Marija Matejčić, Guillaume Salbreux, Caren Norden
A non-cell-autonomous actin redistribution enables isotropic retinal growth
PLoS Biol, August 10, 2018. https://doi.org/10.1371/journal.pbio.2006018

Katrin Boes | Max-Planck-Institut für molekulare Zellbiologie und Genetik

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zika und Gelbfieber: Impfstoffe ohne Ei
21.09.2018 | Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg

nachricht Einbahnstraße für das Salz
21.09.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue CBMC-Geräteschutzschaltervarianten

22.09.2018 | Energie und Elektrotechnik

ISO-27001-Zertifikat für die GFOS mbH und die GFOS Technologieberatung GmbH

21.09.2018 | Unternehmensmeldung

Kundenindividuelle Steckverbinder online konfigurieren und bestellen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics