Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Impfen über die Haut – Gezielter Wirkstofftransport mit Hilfe von Nanopartikeln

22.05.2019

Forschenden am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam ist es gelungen Nanopartikel so weiterzuentwickeln, dass sie von speziellen Zellen der menschlichen Haut aufgenommen werden können. Diese sogenannten Langerhans Zellen koordinieren die Immunantwort und alarmieren den Körper, wenn Erreger oder Tumore im Organismus auftreten. Mit dieser neuen Technologieplattform könnten nun gezielt Wirkstoffe, zum Beispiel Impfstoffe oder Medikamente, in Langerhans Zellen eingebracht werden, um eine kontrollierte Immunantwort zu erreichen.

Die Haut ist ein besonders attraktiver Ort für die Applikation vieler Medikamente, die das Immunsystem beeinflussen. Die geeigneten Zielzellen liegen in der Haut nur wenige Mikrometer unter ihrer Oberfläche.


Querschnitt einer Langerhans Zelle, deren Membran grün eingefärbt wurde (Marker CD1a). Liposomen die ins Zellinnere aufgenommen wurden, sind hier rot dargestellt.

Langerhans Zellforschung Labor an der Medizinischen Universität Innsbruck

Die Langerhans-Zellen befinden sich in dieser obersten Hautschicht, der Epidermis. Diese Zellen können nach lokaler Anwendung eines Wirkstoffs zu einer Reaktion im gesamten Körper der Patienten führen.

Langerhans Zellen – Experten der Keimabwehr

Für die Entwicklung eines gezielten Wirkstofftransports, der die Medikamente direkt an Langerhans Zellen liefert, macht man sich deren natürliche Funktion zunutze:

Als professionelle, Antigen-präsentierende Zellen erkennen sie Erreger, nehmen diese auf und präsentieren Bestandteile dieser Pathogene an Effektorzellen des Immunsystems, den T-Zellen. Für die Erkennung und Aufnahme verwenden die Langerhans Zellen Rezeptoren auf ihrer Oberfläche, die die Umgebung nach Pathogenen durchsuchen.

Erreger werden so anhand von Zuckerstrukturen erkannt, die sie auf ihrer Oberfläche tragen. Langerin, ein Protein aus der Familie der C-Typ Lektine, ist ein solcher Rezeptor auf Langerhans Zellen und dient der Erkennung von Viren und Bakterien. Die spezifische Expression des Langerins auf Langerhans-Zellen erlaubt einen gezielten Transport von Therapeutika um gleichzeitig Nebenwirkungen zu minimieren.

Ein Forscherteam um Dr. Christoph Rademacher am Max-Planck-Institut für Kolloid- und Grenzflächenforschung konnte sich nun das Wissen um die zugrundeliegenden Erkennungsmechanismen mit atomarer Auflösung zunutze machen.

Es gelang ihnen eine synthetische, zuckerähnliche Substanz zu entwickeln, die nun spezifisch an Langerin auf der Oberfläche von Langerhans Zellen bindet.

In Zusammenarbeit mit einem wissenschaftlichen Team des Labors für Langerhans Zellforschung der Medizinischen Universität Innsbruck wurden Nanopartikel entwickelt, die durch diese Wechselwirkung in Langerhans Zellen der menschlichen Haut aufgenommen werden können.

Damit legen die Forschenden den Grundstein für weitere Entwicklungen um z.B. Impfstoffe direkt über die Haut genau an die Immunzellen auszuliefern, die später für die Aktivierung des Immunsystems des ganzen Körpers verantwortlich sind.

Auf der Basis dieser Erkenntnisse lassen sich in Zukunft möglicherweise neuartige Impfstoffe gegen Infektionen oder auch Immuntherapien zur Behandlung von Krebs oder Autoimmunerkrankungen entwickeln.

Ausgangspunkt waren die Arbeiten von Ralph M. Steinman (Nobelpreis 2011) und anderer Wissenschaftler, die das Potential der dendritischen Zellen zeigten. Die Langerhans Zellen gehören dazu, und sind in der Lage eine Immunantwort auszulösen. Diese Erkenntnisse wurden in Folge für die Anwendung in der Krebstherapie weiterentwickelt und es konnte bewiesen werden, dass eine Immunantwort über künstlich eingebrachte Antigene erreicht werden kann.

Spätere Arbeiten bestätigten dies und zeigten zudem, dass auch menschliche Langerhans Zellen in der Lage sind, das Immunsystem zu aktivieren, was für eine Impfstoffentwicklung über die Haut besonders interessant ist. Eine gezielte Lieferung von Immunmodulatoren an Langerhans Zellen wäre somit erwünscht.

Dies wird aber durch das komplexe Umfeld der Haut, vor allem durch konkurrierende Fresszellen, den Makrophagen, in diesem Gewebe häufig erschwert oder sogar verhindert. So können Wirkstoffe, welche die Langerhans Zellen nun nicht mehr erreichen, durch Aufnahme in benachbarte Zellen zu ungewollten Nebenwirkungen führen.

Bindung durch synthetische Zucker

Basierend auf Erkenntnissen zur Erkennung der natürlichen Zuckerliganden des Langerins wurde nun in der Arbeitsgruppe um Dr. Christoph Rademacher ein künstlicher Ligand entwickelt, welcher spezifisch an das Langerin auf Langerhans Zellen bindet.

Dazu wurden synthetische Zucker im Labor hergestellt und ihre Wechselwirkungen mit dem Rezeptor durch Kernresonanzspektroskopie untersucht. Mit dieser Methode konnten die Forschenden bestimmen, welche Atome des Liganden mit welchen Anteilen des Rezeptors wechselwirken.

Über diesen Struktur-basierten Ansatz gelangten sie dann zu einer Verbindung, die auf Nanopartikeln verankert und getestet werden konnte. Bei diesen Partikeln handelt es sich um Liposomen, welche ohne den Liganden bereits seit vielen Jahren in der Klinik als Träger für verschiedene Wirkstoffe eingesetzt werden. Der Unterschied zu bestehenden Systemen ist nun, dass der Zucker-ähnliche Ligand eine spezifische Bindung an Langerhans Zellen ermöglicht.

Die Untersuchungen an diesen Immunzellen wurden in Zusammenarbeit mit der Forschungsgruppe von Assoz. Prof. Patrizia Stoitzner im Langerhans Zellforschung Labor an der Medizinischen Universität Innsbruck durchgeführt.

Die Kooperation der beiden Gruppen konnte zeigen, dass die spezifische Aufnahme der Liposomen selbst in der komplexen Umgebung menschlicher Hautzellen aufrechterhalten bleibt. Zum Einsatz kamen dabei Methoden der Durchflusszytometrie und der konfokalen Mikroskopie.

Diese liposomalen Partikel stellen nun möglicherweise eine allgemein anwendbare Plattform dar, mittels derer die Forschenden am MPI für Kolloid- und Grenzflächenforschung in Zukunft an der Entwicklung von neuartigen Impfstoffen arbeiten können.

Wissenschaftliche Ansprechpartner:

Dr. Christoph Rademacher
Telefon:+49 331 567-9358
Fax:+49 331 567-9302
E-Mail: christoph.rademacher@mpikg.mpg.de

Originalpublikation:

https://pubs.acs.org/doi/10.1021/acscentsci.9b00093

Weitere Informationen:

http://www.mpikg.mpg.de/6111529/news_publication_13499964_transferred

Katja Schulze | Max-Planck-Institut für Kolloid- und Grenzflächenforschung
Weitere Informationen:
http://www.mpikg.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Freund oder Feind?
14.07.2020 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Selbst bei Bakterien können sich Geschwister unterscheiden
14.07.2020 | Eberhard Karls Universität Tübingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hammer-on – wie man Atome schneller schwingen lässt

Schwingungen von Atomen in einem Kristall des Halbleiters Galliumarsenid (GaAs) lassen sich durch einen optisch erzeugten Strom impulsiv zu höherer Frequenz verschieben. Die mit dem Strom verknüpfte Ladungsverschiebung zwischen Gallium- und Arsen-Atomen wirkt über elektrische Wechselwirkungen zurück auf die Schwingungen.

Hammer-on ist eine von vielen Rockmusikern benutzte Technik, um mit der Gitarre schnelle Tonfolgen zu spielen und zu verbinden. Dabei wird eine schwingende...

Im Focus: Kryoelektronenmikroskopie: Hochauflösende Bilder mit günstiger Technik

Mit einem Standard-Kryoelektronenmikroskop erzielen Biochemiker der Martin-Luther-Universität Halle-Wittenberg (MLU) erstaunlich gute Aufnahmen, die mit denen weit teurerer Geräte mithalten können. Es ist ihnen gelungen, die Struktur eines Eisenspeicherproteins fast bis auf Atomebene aufzuklären. Die Ergebnisse wurden in der Fachzeitschrift "PLOS One" veröffentlicht.

Kryoelektronenmikroskopie hat in den vergangenen Jahren entscheidend an Bedeutung gewonnen, besonders um die Struktur von Proteinen aufzuklären. Die Entwickler...

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: Neue Schlankheitstipps für Computerchips

Lange Zeit hat man in der Elektronik etwas Wichtiges vernachlässigt: Wenn man elektronische Bauteile immer kleiner machen will, braucht man dafür auch die passenden Isolator-Materialien.

Immer kleiner und immer kompakter – das ist die Richtung, in die sich Computerchips getrieben von der Industrie entwickeln. Daher gelten sogenannte...

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wind trägt Mikroplastik in die Arktis

14.07.2020 | Ökologie Umwelt- Naturschutz

Nanoelektronik lernt wie das Gehirn

14.07.2020 | Informationstechnologie

Anwendungslabor Industrie 4.0 der THD: Smarte Lösungen für die Unikatproduktion

14.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics