Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Immunzellen pendeln zwischen Nervenwasser und Gehirngewebe und sind immer in Aktionsbereitschaft

09.03.2016

Wissenschaftler der Universitätsmedizin Göttingen haben neue Erkenntnisse in der Grundlagenforschung über Immunzellen im Nervenwasser gewonnen. Die Entdeckung ist für das Verständnis der Funktion des Nervenwassers im gesunden Nervensystem und bei neurologischen Erkrankungen, vor allem der Multiplen Sklerose, von Bedeutung. Veröffentlichung in einer Februar 2016 Ausgabe von „NATURE“.

Die Untersuchung von Nervenwasser (Liquor) gehört zur Standard-Diagnostik, um entzündliche Erkrankungen des Zentralnervensystems (ZNS), wie z.B. Meningitis und Enzephalitis, oder Multiple Sklerose (MS) zu erkennen. Eine erhöhte Zahl von Immunzellen im Nervenwasser gilt als ein diagnostisches Indiz für MS. Wie Immunzellen in den Liquor gelangen, welche Funktion sie dort haben, und wie sie mit dem Nervengewebe kommunizieren, war bislang nicht geklärt.


T-Zellwanderung zwischen Gehirngewebe und dem umgebenden Hirnwasser (Liquor)

Bildnachweis: Johannes Erzberger

Ein Forscherteam unter der Leitung von Wissenschaftlerinnen und Wissenschaftlern des Instituts für Neuroimmunologie und des Instituts für Multiple Sklerose Forschung (IMSF) der Universitätsmedizin Göttingen (UMG) hat jetzt neue Erkenntnisse über die Immunfunktion des Nervenwassers gewonnen. Mittels Echtzeitmikroskopie konnten die Forscher die Bewegung von Immunzellen filmen. Sie entdeckten: Immunzellen pendeln rege zwischen Nervenwasser und Gehirngewebe.

Als Schaltstelle für diesen Verkehr wirken die weichen Hirnhäute, die das Gehirngewebe umgeben. Fresszellen in den Hirnhäuten ermöglichen den Immunzellen den Eintritt in das Nervengewebe und geben die Richtung der Immunzellwanderung vor. Die Forschungsarbeit eröffnet neue Einblicke in die Wanderung und Funktion von Immunzellen im Nervenwasser.

Die Erkenntnisse könnten vor allem für diagnostische oder therapeutische Aspekte bei der Multiplen Sklerose, einer Autoimmunerkrankung des Zentralnervensystems, von Bedeutung sein. Die Ergebnisse der Forschungen sind in dem renommierten Wissenschaftsmagazin NATURE veröffentlicht.

Originalveröffentlichung: Christian Schläger, Henrike Körner, Martin Krueger, Ste-fano Vidoli, Elke Brylla, Michael Haberl, Carlos Caban͂as, Thomas Issekutz, Peter Nelson, Tjalf Ziemssen, Ingo Bechmann, Dmitri Lodygin, Francesca Odoardi & Alex-ander Flügel. Effector T cell trafficking between the leptomeninges and the cerebro-spinal fluid, Nature 2016; 530(7590):349-53. doi:10.1038/nature16939

Es wird vermutet, dass bei der Multiplen Sklerose falsch programmierte Immunzellen, sogenannte autoaggressive T-Zellen, sich fälschlicherweise gegen das eigene Gehirngewebe richten und eine starke Entzündungsreaktion im ZNS verursachen. In der Folge kommt es unter anderem zu den MS-typischen schweren und zum Teil bleibenden Ausfallerscheinungen, wie z.B. Gefühlsstörungen und Lähmungen. Bei der diagnostischen Untersuchung von MS findet man eine erhöhte Zahl an T-Zellen im Nervenwasser. Welche Rolle Immunzellen im Nervenwasser bei der Entstehung von Multipler Sklerose (MS) haben, ist bislang noch nicht genau geklärt.

FORSCHUNGSERGEBNISSE IM DETAIL

Moderne Verfahren der Echtzeitmikroskopie eröffneten den Göttinger Grundlagenforschern bislang einzigartige Einblicke in das Verhalten von Immunzellen im Nervenwasser: Die Forscher fanden heraus, dass die Hirnhaut, die direkt auf der Oberfläche des Nervengewebes liegt, eine entscheidende Schaltstelle für die Wanderung von T-Zellen ist. T-Zellen auf dem Weg in das ZNS verlassen die Blutbahn aus Gefäßen dieser Hirnhaut und kriechen daraufhin in das umliegende Gewebe. Dieses Milieu ist sehr speziell und im Körper einmalig. Die Gefäße sind in der Hirnhaut eingebettet und von zahlreichen faserigen Bindegewebsstrukturen umschnürt, die wie in einem Klettergerüst verspannt sind. Dieses bindegewebige Netz ist zusätzlich von Zellen durchsetzt. Der Liquor fließt über und durch dieses Faser-Zellgeflecht. Die Forscher entdeckten, dass T-Zellen, die direkt an der Expositionsfläche zum Liquor entlangkriechen, regelrecht in den Liquor abgewaschen werden. „Offensichtlich entscheidet sich also in der Hirnhaut, ob die T-Zellen in das angrenzende Nervengewebe eindringen können oder in den Liquor abgeschwemmt werden“, sagt Dr. Henrike Körner, eine Erst-Autorin der Publikation und Mitarbeiterin des Instituts für Neuroimmunologie und des IMSF der UMG. Frühere Studien gingen davon aus, dass Immunzellen vor allem an der Produktionsstätte des Liquors, dem Plexus choroideus, in den Liquorraum übertreten.

Welche Signale regulieren das Anheften der T-Zellen an der Hirnhaut? Die Göttinger Wissenschaftler fanden im Hirnhautgewebe spezialisierte Fresszellen, die T-Zellen Signale für die Aktivierung und für die Anheftung liefern können. T-Zellen suchen Fresszellen systematisch nach diesen Signalen ab. Bleiben die Signale aus, laufen die T-Zellen Gefahr, in den Liquor abgeschwemmt zu werden. Bekommen sie dagegen die nötigen Aktivierungs- oder Klebesignale, haften sie an der Oberfläche fest und können in das Nervengewebe eindringen, wo sie den zerstörerischen Entzündungsprozess starten.

Sind die abgeschwemmten T-Zellen im Liquor überhaupt für den Krankheitsprozess von Bedeutung? Die Göttinger Wissenschaftler konnten zeigen, dass die Zellen im Liquor vollständig funktionstüchtig bleiben, d.h. sie verlieren ihre krankmachende Wirkung nicht. „Diese Befunde könnten daher für eine diagnostische Untersuchung des Liquors bei MS-Patienten von Bedeutung sein: Wenn man etwas über die Eigenschaften pathogener T-Zellen bei der MS erfahren will, sollte man die T-Zellen aus dem Liquor untersuchen“, sagt Dr. Francesca Odoardi, Ko-Senior-Autorin der Publikation und Gruppenleiterin am Institut für Neuroimmunologie der UMG.

Was passiert mit T-Zellen, die in den Liquor abgeschwemmt werden? Auch auf diese Frage konnten die Wissenschaftler eine Antwort finden. T-Zellen können zwischen Liquor und dem angrenzenden Hirnhautgewebe hin- und herpendeln. Stabil kleben bleiben die Zellen vor allem, wenn sie auf Fresszellen treffen, die besonders hohe Mengen an „Klebematerial“ produzieren. Dies ist z.B. bei einer Entzündung des Hirngewebes der Fall oder wenn Fresszellen Aktivierungssignale für T-Zellen liefern.

AUSBLICK

Die Beobachtungen des Göttinger Forscherteams zeigen neue Facetten der Immunfunktion des Nervenwassers (Liquor) auf. Im Liquor landen vor allem T-Zellen, die die Hirnhäute vergeblich auf Anwesenheit ihres spezifischen Eiweißes oder von Entzündung abgesucht haben. Der Liquor stellt daher für T-Zellen eine Art Abstellkammer dar. Er sorgt dafür, dass potenziell gefährliche Eindringlinge vom empfindlichen Nervengewebe ferngehalten werden. „Allerdings können sich zirkulierende Zellen bei Bedarf jederzeit wieder an die Hirnhaut anheften und in das Nervengewebe eindringen. Eine genauere Aussage über die Zellen und deren Funktion im Liquor könnte daher sowohl diagnostisch als auch therapeutisch genutzt werden“, sagt Prof. Dr. Alexander Flügel, Senior-Autor der Publikation und Direktor des Instituts für Neuroimmunologie der UMG.

HINTERGRUNDINFORMATION: NERVENWASSER SCHÜTZT DAS GEHIRN

Das Zentralnervensystem (ZNS), bestehend aus Gehirn und Rückenmark, ist vor möglichen Schädigungen aus der Außenwelt sehr gut geschützt. Dafür sorgen Knochen (Schädel, Wirbelsäule), faserig/zelluläre Hüllen (Hirnhäute, Meningen) und ein Flüssigkeitsmantel, das Nervenwasser (Liquor cerebrospinalis, kurz Liquor). Der Liquor wird mehrmals täglich komplett ausgetauscht, d.h. er wird ständig neu gebildet und an anderer Stelle abgesaugt. Dies führt dazu, dass der Liquor zirkuliert. Anders als Blut oder Lymphe fließt Liquor nicht in spezialisierten Gefäßen. Er verteilt sich auf der gesamten Oberfläche des ZNS, genauer in den Hüllstrukturen, den Hirnhäuten. Diese „Zirkulation“ kann Stoffe oder Zellen zum Nervengewebe hin oder davon wegtransportieren. In der medizinischen Diagnostik spielt die Liquoruntersuchung eine wichtige Rolle, weil sich dessen Zusammensetzung bei Erkrankungen des Nervensystems charakteristisch ändern kann.

BILDUNTERSCRIFT: T-Zellwanderung zwischen Gehirngewebe und dem umgebenden Hirnwasser (Liquor): Mit den Hirnhäuten als zentraler Schaltstelle (ein 3D-Netzwerk aus Gefäßen, extrazellulärer Matrix und Zellen), können T-Zellen beständig zwischen Gewebe des Zentralnervensystems und dem umgebenden Liquor hin und her wandern. Im Bild ist ein grundlegendes Prinzip dieser Wanderungsbewegung gezeigt: Wenn eine T-Zelle innerhalb der Hirnhäute auf eine Fresszelle (Makrophage, weißer Pfeil) trifft und dadurch aktiviert wird, kann die T-Zelle fest auf der Oberfläche des Rückenmarks anhaften und in dieses einwandern. Wenn es zu keinem Zusammentreffen beider Zellen kommt, dann wird die T-Zelle mit hoher Wahrscheinlichkeit in den Liquor abgewaschen. Bildnachweis: Johannes Erzberger.

WEITERE INFORMATIONEN:
Universitätsmedizin Göttingen, Georg-August-Universität
Institut für Neuroimmunologie / Institut für Multiple-Sklerose-Forschung
Prof. Dr. Alexander Flügel
Telefon 0551 / 39-13332
IMSF@med.uni-goettingen.de

Stefan Weller | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-goettingen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen
15.10.2018 | Universität Rostock

nachricht Bio-Angeln für Seltene Erden: Wie Eiweiß-Bruchstücke Elektronik-Schrott recyceln
15.10.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Materiezustände durch Licht verändern

Forscherinnen und Forscher der Universität Hamburg stören die kristalline Ordnung

Physikerinnen und Physikern der Universität Hamburg ist es gelungen, mithilfe von Laserpulsen die Ordnung von Quantenmaterie so zu stören, dass ein spezieller...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Berlin5GWeek: Private Industrienetze und temporäre 5G-Inseln

15.10.2018 | Veranstaltungen

PV Days in Halle zeigen neue Chancen für die Photovoltaik

11.10.2018 | Veranstaltungen

Methan als umweltfreundlicher Kraftstoff für LKW, Busse und andere Nutzfahrzeuge

10.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grauer Star: Neues Verfahren bei der Katarakt-Operation

15.10.2018 | Medizintechnik

Blauer Phosphor – jetzt erstmals vermessen und kartiert

15.10.2018 | Physik Astronomie

Geowissenschaften: Was unter dem Wald schläft

15.10.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics