Immunsystem von Pflanzen erkennt Bakterien an kleinen Fettsäuremolekülen

Blätter der Ackerschmalwand (arabidopsis thaliana) werden infiziert, indem eine Bakterien enthaltende Lösung aufgepresst wird. Bild: A. Eckert / TUM

„Das Immunsystem der Pflanzen ist raffinierter, als wir gedacht haben“, sagt Dr. Stefanie Ranf vom Lehrstuhl für Phytopathologie der TU München. Zusammen mit einem internationalen Forschungsteam hat die Biochemikerin Substanzen entdeckt, die die pflanzliche Abwehr aktivieren.

Bisher war die Wissenschaft davon ausgegangen, dass die Zellen von Pflanzen – ähnlich wie die von Menschen und Tieren – Bakterien an komplexen molekularen Verbindungen, beispielsweise aus der Bakterienzellwand erkennen.

Vor allem bestimmte Moleküle mit einem fettähnlichen Teil und mehreren Zucker-Bausteinen, die sogenannten Lipopolysaccharide, kurz LPS, standen im Verdacht, eine Immunantwort auszulösen.

2015 war es Ranfs Team gelungen, das entsprechende Rezeptor-Protein aufzuspüren: das LipoOligosaccharide-specific Reduced Elicitation, kurz LORE. Alle Experimente deuteten darauf hin, dass dieses LORE-Protein das Immunsystem der Pflanzenzelle aktiviert, wenn es LPS-Moleküle aus der Zellwand bestimmter Bakterien erkennt.

Ein Misserfolg führt auf die richtige Fährte

„Die Überraschung kam, als wir dieses Rezeptor-Protein genauer untersuchen wollten“, erinnert sich Ranf. „Unser Ziel war es herauszufinden, wie LORE verschiedene LPS-Moleküle unterscheidet. Dazu benötigten wir hochreines LPS.“

Bei der Analyse stellten die Forschenden fest, dass nur LPS-Proben mit bestimmten kurzen Fettsäurebestandteilen die Pflanzenabwehr auslösten.

Überraschenderweise fanden sie in all diesen aktiven LPS-Proben auch freie Fettsäuremoleküle, die extrem stark haften. Erst nach monatelangem Experimentieren gelang es dem Team, diese freie Fettsäuren vom LPS abzutrennen.

„Als es uns dann endlich gelungen war, hochreines LPS herzustellen, zeigte sich, dass die Pflanzenzelle darauf überhaupt nicht reagiert. Damit war klar, dass die Immunantwort nicht durch das LPS selbst ausgelöst wird, sondern durch den Kontakt mit den daran haftenden 3-Hydroxyfettsäuremolekülen“, so Ranf.

Bakterien-Bausteine im Visier

Die 3-Hydroxyfettsäuren sind im Vergleich zu den großen LPS sehr einfache chemische Bausteine. Sie werden von Bakterien in großen Mengen hergestellt und in unterschiedlichste Komponenten eingebaut. Die Fettsäure-Bausteine sind für die Bakterien unverzichtbar.

„Die Strategie der Pflanzenzellen, Bakterien an Hand dieser Grundbausteine zu identifizieren, ist äußerst raffiniert, denn die Bakterien brauchen die 3-Hydroxyfettsäuren und können somit die Immunantwort nicht umgehen“, resümiert Ranf.

Fitnessprogramm für Pflanzen

Die Forschungsergebnisse könnten künftig helfen, Pflanzen mit verbesserter Immunreaktion zu züchten oder gentechnisch herzustellen. Denkbar ist auch, dass man Pflanzen gezielt mit 3-Hydroxyfettsäuren behandelt, um ihre Abwehrkräfte gegen Krankheitserreger zu verbessern.

Mehr Informationen:

Die Arbeit entstand durch eine internationale und interdisziplinäre Kooperation von Pflanzen-Molekularbiologen, Chemikern und Mikrobiologen. Beteiligt waren neben dem Lehrstuhl für Phytopathologie und dem Lehrstuhl für Lebensmittelchemie und molekulare Sensorik der TUM das Forschungszentrum Borstel (Leibniz Lungenzentrum), das Helmholtz Zentrum München, das österreichische Gregor Mendel Institut für Molekulare Pflanzenbiologie, die Universität von Maryland/USA, sowie die französische Universität von Reims Champagne-Ardenne.

Die Forschung von Stefanie Ranf wurde gefördert durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen des Sonderforschungsbereichs (SFB) 924 sowie durch das Emmy Noether Programm.

Dr. Stefanie Ranf
Technische Universität München
Lehrstuhl für Phytopathologie
Emil-Ramann-Str. 2, 85354 Freising
Tel.: +49 8161 71 5626 – E-Mail: stefanie.ranf@tum.de

Bacterial medium chain 3-hydroxy fatty acid metabolites trigger immunity in Arabidopsis plants
Alexander Kutschera, Corinna Dawid, Nicolas Gisch, Christian Schmid, Lars Raasch, Tim Gerster, Milena Schäffer, Elwira Smakowska-Luzan, Youssef Belkhadir, A. Corina Vlot, Courtney E. Chandler, Romain Schellenberger, Dominik Schwudke, Robert K. Ernst, Stéphan Dorey, Ralph Hückelhoven, Thomas Hofmann, Stefanie Ranf
Science, April 12, 2019 – DOI: 10.1126/science.aau1279
Link: https://science.sciencemag.org/cgi/doi/10.1126/science.aau1279

https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/detail/article/35335/ Link zur Presseinformation

Media Contact

Dr. Ulrich Marsch Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer