Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Immunsystem: Wie es reguliert wird

31.01.2011
Asthma, Diabetes, Rheuma: Solche Krankheiten können entstehen, wenn das Immunsystem nicht richtig funktioniert. Neues Wissen über die Regulation der Immunabwehr haben jetzt Forscher der Universitäten Würzburg und Mainz erarbeitet.

Schwierige Aufgabe: Das Immunsystem hat zwischen körpereigen und körperfremd zu unterscheiden. Einerseits muss es Krankheitserreger und Krebszellen bekämpfen. Andererseits darf es nicht den eigenen Organismus angreifen. Falls es das irrtümlicherweise doch tut, können so genannte Autoimmunkrankheiten entstehen. Rheuma, bestimmte Formen von Diabetes oder ein Hautleiden namens Schuppenflechte sind nur einige davon.

Um die gesunde Balance zu halten, muss das Immunsystem die Aktivität seiner zahlreichen Komponenten genau steuern. Eine zentrale Rolle spielen dabei die regulatorischen T-Zellen. Erst seit etwa zehn Jahren ist bekannt, dass sie Fehlreaktionen des Immunsystems dämpfen. Im Körper von Patienten mit Autoimmunkrankheiten sind zu wenige von ihnen vorhanden, bei Krebspatienten dagegen oft zu viele.

Regulatorische T-Zellen: Zielpunkte für Therapien

Was tun diese Zellen, wie steuern sie die Immunreaktion? Viele Wissenschaftler weltweit wollen das herausfinden – denn die regulatorischen T-Zellen sind interessante Angriffspunkte für neue Therapien. So besteht zum Beispiel die Hoffnung, eine bessere Immunantwort gegen Krebs zu erreichen, wenn man diese Zellen vorübergehend ausschaltet. Oder die Symptome von Autoimmunkrankheiten zu lindern, indem man die Zellen aktiviert.

Botenstoffe werden in „normale“ T-Zellen gepumpt

Die Eigenheiten der regulatorischen T-Zellen werden auch am Institut für Pathologie der Universität Würzburg ergründet, in der Forschungsgruppe von Professor Edgar Serfling. Etwas Spannendes haben die Würzburger mit Wissenschaftlern aus Mainz im Jahr 2007 entdeckt: Die regulatorischen T-Zellen können mit den „normalen“ T-Zellen des Immunsystems kommunizieren, indem sie kleine Verbindungstunnel zu ihnen anlegen und sie dann mit dem Botenstoff cAMP vollpumpen.

Als Reaktion darauf teilen sich die „normalen“ T-Zellen nicht mehr und stellen die Produktion entzündungsfördernder Stoffe ein. Das bremst die Aktivität der gesamten Immunabwehr. Im Fall einer Autoimmunkrankheit wäre das ein durchaus erwünschter Effekt.

Neue Erkenntnisse in PNAS publiziert

Wie genau schalten die regulatorischen die normalen T-Zellen aus? Das beschreiben die Würzburger und Mainzer Forscher in einer aktuellen Arbeit in der Zeitschrift PNAS. Der übertragene Botenstoff cAMP führt in den normalen T-Zellen zur verstärkten Produktion eines Proteins, das viele Gene lahm legt. „Davon betroffen ist auch das NFATc1-Gen, wodurch wiederum die Produktion von entzündungsfördernden Interleukinen gestoppt wird“, erklärt Professor Serfling.

Dieser neu entdeckte Ablauf sei ein ganz wesentlicher Schritt bei der Regulation des Immunsystems. Als nächstes wollen die Wissenschaftler weitere molekulare Details klären. Möglicherweise trägt das von ihnen erarbeitete Wissen in der Zukunft dazu bei, dass sich bei Autoimmun- und Krebskrankheiten neue Möglichkeiten der Behandlung eröffnen.

Ergebnisse in Sonderforschungsbereich erarbeitet

Erzielt wurden diese Ergebnisse im Sonderforschungsbereich (SFB)/Transregio 52 „Transkriptionelle Programmierung individueller T-Zell-Populationen“. Die treibenden Kräfte für die neue Publikation waren die Würzburger Forscher Martin Väth und Josef Bodor. Unterstützt wurden sie am Pathologischen Institut von Friederike Berberich-Siebelt und Edgar Serfling.

Edgar Serfling ist der Sprecher dieser SFB-Initiative, in der die Universitäten Würzburg und Mainz mit der Charité Universitätsmedizin Berlin kooperieren. Die Deutsche Forschungsgemeinschaft fördert den SFB seit Juli 2008 mit rund 12 Millionen Euro für zunächst vier Jahre.

„Regulatory T cells facilitate the nuclear accumulation of inducible cAMP early repressor (ICER) and suppress nuclear factor of activated T cells c1 (NFATc1)”, Martin Väth, Tea Gogishvilib, Tobias Bopp, Matthias Klein, Friederike Berberich-Siebelt, Stefan Gattenlöhner, Andris Avots, Tim Sparwasser, Nadine Grebe, Edgar Schmitt, Thomas Hünig, Edgar Serfling und Josef Bodor. PNAS, online publiziert am 24. Januar 2011, doi: 10.1073/pnas.1009463108

Kontakt

Prof. Dr. Edgar Serfling, Institut für Pathologie der Universität Würzburg,
T (0931) 201-47431, serfling.e@mail.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Berichte zu: Autoimmunkrankheit Botenstoff Diabetes Immunabwehr Immunsystem PNAS Pathologie Rheuma T cells T-Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Risikofaktor für Darmkrebs entschlüsselt
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algen haben Gene fürs Landleben
13.07.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungsnachrichten

Maschinelles Lernen: Neue Methode ermöglicht genaue Extrapolation

13.07.2018 | Informationstechnologie

Fachhochschule Südwestfalen entwickelt innovative Zinklamellenbeschichtung

13.07.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics