Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018

Neueste Methoden der Mikroskopie helfen dabei, zielgerichtete personalisierte Immuntherapien gegen Krebserkrankungen zu entwickeln. Auf diesem Gebiet arbeitet ein neuer Forschungsverbund, der von Würzburg aus koordiniert wird.

Jährlich erkranken weltweit circa 14 Millionen Menschen an bösartigen Tumorerkrankungen, mehr als die Hälfte der Betroffenen sterben an den Folgen. Aktuell ermöglichen neue Immuntherapien erstmals eine vielversprechende, effiziente „personalisierte“ Krebsimmuntherapie.


Mit der dSTORM Super-Resolution-Mikroskopie lassen sich Tumor-assoziierte Antigene auf primären Tumorzellen sichtbar machen und quantifizieren.

(Bild: AG Markus Sauer)

Hiermit kann eine langdauernde und nebenwirkungsreiche Chemotherapie in vielen Fällen umgangen werden. Aufgrund der hohen Wirksamkeit der Therapeutika ist für ihren erfolgreichen Einsatz bereits eine minimale Menge Tumorspezifischer Zelloberflächenmarker (Antigene) ausreichend.

Immuntherapien können schwere Nebenwirkungen haben und sind auch sehr kostspielig. Darum ist die Ermittlung eines individuellen und quantitativen Antigenprofils auf den Tumorzellen, aber auch auf gesunden Zellen/Geweben unumgänglich, um unnötige Behandlungen zu verhindern.

Bisherige Methoden sind nicht empfindlich genug

Die derzeit in den Kliniken etablierten Nachweismethoden, wie immunhistochemische Färbereaktionen für Gewebeschnitte solider Tumore und durchflusszytometrische Verfahren (FACS) zur Detektion von im Blut zirkulierende Tumorzellen, sind in ihrer Empfindlichkeit begrenzt und nicht für eine quantitative Erfassung weniger Antigenmoleküle pro Zelle geeignet.

Um bei Tumorpatienten die bestmögliche Immuntherapie anwenden zu können, ist daher eine zuverlässige Identifizierung der behandelbaren Patienten auf Basis des Nachweises auch geringster Antigenmengen auf Tumorzellen dringend notwendig.

Daran arbeitet das neue BMBF-Verbundprojekt „Quantitative Super-Resolution-Mikroskopie für die personalisierte Immuntherapie maligner Erkrankungen (IMMUNOQUANT)“, das vom Bundesministerium für Bildung und Forschung (BMBF) gefördert wird. Es setzt eine hochempfindliche Methode mit hoher räumlicher Auflösung zur Detektion selbst einzelner Antigene auf Tumorzellen ein.

Damit können erstmals auch niedrig exprimierte Antigene auf Patientenzellen und Tumorgewebe sicher erfasst und eine zielgerichtete personalisierte Immuntherapie ohne Nebenwirkungen eingesetzt werden.

Antikörpersignale auf Tumorzellen eindeutig identifizieren

Der Verbund erforscht den Einsatz der einzelmolekülempfindlichen Super-Resolution-Mikroskopie Methode dSTORM, die im Labor von Prof. Dr. Markus Sauer am Biozentrum der Julius-Maximilians-Universität Würzburg (JMU) entwickelte wurde, zur quantitativen Bestimmung Tumor-assoziierter Antigene. Zudem werden Algorithmen entwickelt, die eine eindeutige Unterscheidung spezifischer Antikörpersignale auf Tumorzellen und Gewebeproben von Hintergrundsignalen und unspezifisch bindenden Antikörpern erlauben.

Die Methode wird derzeit an primären Zellen und Modellsystemen entwickelt, optimiert und in einer klinischen Studie validiert. Hierfür arbeiten die JMU und die Arbeitsgruppen von Prof. Dr. Harald Wajant und Dr. med. Michael Hudecek an der von Prof. Dr. Hermann Einsele geführten Medizinischen Klinik II am Universitätsklinikum Würzburg zusammen.

Die MorphoSys AG generiert neue hochspezifische Antikörper und entwickelt auf der Basis der Verbundergebnisse neue therapeutische Ansätze. Parallel hierzu entwickeln die Verbundpartner Carl Zeiss Microscopy GmbH und ibidi GmbH automatisierte Mikroskopieverfahren und spezielle Probenkammern für die quantitative hochauflösende Fluoreszenzmikroskopie von Tumorzellen und Gewebeschnitten.

Sicherer Nachweis selbst geringer Antigen-Mengen

Erste Ergebnisse des Verbundes zeigen, dass die einzelmolekülempfindliche Mikroskopiemethode dSTORM selbst geringste Mengen an Tumor-assoziierten Antigenen sicher auf primären Tumorzellen nachweisen kann, die mittels Standardtechniken in der Klinik negativ getestet wurden.

Gleichzeitig konnte gezeigt werden, dass nur wenige Tumorantigene pro Zelle für eine erfolgreiche Therapie mit Antigen-spezifischen T-Zellen ausreichend sein können. Durch die genaue Kenntnis darüber, wie viele Antigene pro Zelle für eine erfolgreiche Therapie vorhanden sein müssen, können in Zukunft verbesserte und nebenwirkungsfreie Therapien entwickelt werden.

Der Verbund schafft damit die Grundlagen, um in Zukunft mehr Patienten mit einer gezielten und effizienten, vor allem aber sicheren Tumortherapie zu behandeln und Behandlungskosten zu reduzieren. Gleichzeitig zeigen die Ergebnisse erstmals, wie ein wissenschaftliches Spezialgerät der Super-Resolution-Mikroskopie erfolgreich als Werkzeug in der klinischen Diagnostik eingesetzt werden kann.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Markus Sauer, Koordinator des BMBF-Verbundprojekts IMMUNOQUANT, Biozentrum, JMU, T +49 931 31-88687, m.sauer@uni-wuerzburg.de

Weitere Informationen:

https://www.biozentrum.uni-wuerzburg.de/super-resolution/startseite/ Website Lehrstuhl Prof. Dr. Markus Sauer (Biotechnologie und Biophysik)

Robert Emmerich | Julius-Maximilians-Universität Würzburg

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher der Universität Münster gewinnen neue Einblicke in die Evolution von Proteinen
22.10.2019 | Westfälische Wilhelms-Universität Münster

nachricht Die nackte Wahrheit: Wenn ein Mikroorganismus seine Hüllen fallen lässt
22.10.2019 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie

Forschern ist es gelungen, mithilfe eines mikroskopischen Hohlraumes eine effiziente quantenmechanische Licht-Materie-Schnittstelle zu schaffen. Darin wird ein einzelnes Photon bis zu zehn Mal von einem künstlichen Atom ausgesandt und wieder absorbiert. Das eröffnet neue Perspektiven für die Quantentechnologie, berichten Physiker der Universität Basel und der Ruhr-Universität Bochum in der Zeitschrift «Nature».

Die Quantenphysik beschreibt Photonen als Lichtteilchen. Will man ein einzelnes Photon mit einem einzelnen Atom interagieren lassen, stellt dies aufgrund der...

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

Hauptgruppenatome kommen oft in kleinen Clustern vor, die neutral, negativ oder positiv geladen sein können. Das bekannteste neutrale sogenannte Tetraedercluster ist der weiße Phosphor (P4), aber darüber hinaus sind weitere Tetraeder als Substanz isolierbar. Es handelt sich um Moleküle aus vier Atomen, deren räumliche Anordnung einem Tetraeder aus gleichseitigen Dreiecken entspricht. Bisher waren neben mindestens sechs neutralen Versionen wie As4 oder AsP3 eine Vielzahl von negativ geladenen Tetraedern wie In2Sb22– bekannt, jedoch keine kationischen, also positiv geladenen Varianten.

Ein Team um Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist es gelungen, diese positiv geladenen...

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitales-Krankenhaus – wo bleibt der Mensch?

21.10.2019 | Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Forscher der Universität Münster gewinnen neue Einblicke in die Evolution von Proteinen

22.10.2019 | Biowissenschaften Chemie

Die nackte Wahrheit: Wenn ein Mikroorganismus seine Hüllen fallen lässt

22.10.2019 | Biowissenschaften Chemie

Es war wirklich der Asteroid

22.10.2019 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics