Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Immer schön Abstand halten

30.08.2012
Biomembranen umhüllen biologische Zellen wie eine Haut. Sie umschließen auch die Organellen, die innerhalb der Zelle wichtige Aufgaben beim Stoffwechsel oder der Zellteilung übernehmen.

Wie Biomembranen grundsätzlich aufgebaut sind, ist schon lange bekannt. Auch, dass Wassermoleküle benachbarte Biomembranen auf Abstand halten – sonst könnten diese ihre lebenswichtigen Funktionen nicht erfüllen.


Bei einem Abstand von mehr als ca. 1 Nanometer zwischen zwei Membranen dominiert die Abstoßung durch die Wassermoleküle. Diese richten sich an den Lipiden der Membran aus und verlieren dadurch ihre bevorzugte räumliche Anordnung. So halten sie die Membranen auf Distanz.

Bild: Emanuel Schneck


Wenn die Membranen weniger als ca. 1 Nanometer voneinander entfernt sind, überwiegt der Einfluss der Lipidmoleküle: Bei geringen Abstanden blockieren sie sich gegenseitig in ihrer Beweglichkeit (unteres Bild).

Bild: Emanuel Schneck

Mithilfe von Computersimulationen haben Wissenschaftler der TU München und der Freien Universität Berlin jetzt zwei verschiedene Mechanismen entdeckt, die verhindern, dass benachbarte Membran-Oberflächen zusammenkleben. Ihre Ergebnisse sind im Fachjournal PNAS erschienen.

Biomembranen bestehen aus nebeneinander aufgereihten kettenartigen Fettmolekülen, sogenannten Lipiden. In der wässrigen Umgebung von Zellen organisieren sich die Lipide in einer Doppelschicht. Die fettlöslichen Kettenenden weisen jeweils nach innen, die wasserlöslichen Anteile nach außen. Wenn sich zwei Biomembranen mit ihren wasserlöslichen Oberflächen zu nahe kommen, entsteht ein Wasserdruck. Dieser verhindert, dass sich die Membran-Oberflächen berühren. Zwischen zwei intakten Biomembranen befindet sich somit immer ein wenige Nanometer dünner Wasserfilm. Allerdings war bisher unklar, wie die Wasserabstoßung auf molekularer Ebene funktioniert.

Mithilfe aufwändiger Simulationen haben die Wissenschaftler zwei verschiedene Mechanismen entdeckt, die von der Entfernung zwischen den Membranen abhängen. Sind die Membranen mehr als etwa einen Nanometer voneinander entfernt, spielen die Wassermoleküle die entscheidende Rolle bei der Abstoßung. Da sie sich an den Lipiden beider Membran-Oberflächen gleichzeitig ausrichten müssen, verlassen sie ihre bevorzugte räumliche Anordnung. Sie haben dann eine ähnliche Funktion wie Puffer zwischen zwei Eisenbahnwagons: Sie halten die Membranen auf Distanz. Bei kleineren Abständen beinträchtigen sich die Lipide der gegenüberliegenden Membran-Oberflächen in ihrer Beweglichkeit – und die Abstoßung verstärkt sich.

Die beiden Mechanismen werden schon seit einiger Zeit zur Erklärung der Wasserabstoßung diskutiert. Mit ihren Computersimulationen haben die Wissenschaftler von TUM und Freier Universität jetzt erstmals die Stärke der Wasserabstoßung richtig vorhergesagt, also in Übereinstimmung mit Experimenten. Damit ist die Bedeutung der verschiedenen Mechanismen im Detail aufgeklärt. „Wir konnten den Wasserdruck so genau vorhersagen, weil wir in unseren Rechnungen das chemische Potenzial des Wassers präzise bestimmt haben“, erklärt Dr. Emanuel Schneck aus der Arbeitsgruppe von Professor Roland Netz (vormals TUM), der inzwischen am Institute Laue Langevin (ILL) forscht. „Das chemische Potenzial besagt, wie ‚gern’ sich die Wassermoleküle am jeweiligen Ort aufhalten. Damit wir korrekte Ergebnisse erhalten, muss das Potenzial an Membran-Oberflächen und im Umgebungswasser in der Simulation den gleichen Wert haben.“

Ihre Ergebnisse wollen die Forscher jetzt auf eine Vielzahl weiterer biologischer Oberflächen übertragen und dabei noch deutlich komplexere Computermodelle einsetzen.

Diese Forschungsarbeit wurde von der Deutschen Forschungsgemeinschaft (DFG SFB 765) und vom Bundesministerium für Wirtschaft und Technologie (BMWi) im Rahmen eines Projekts der Allianz Industrie Forschung (AiF) unterstützt.

Originalpublikation:
Hydration repulsion between biomembranes results from an interplay of dehydration and depolarization; Emanuel Schneck, Felix Sedlmeier and Roland R. Netz

http://www.pnas.org/cgi/doi/10.1073/pnas.1205811109

Kontakt:
Dr. Emanuel Schneck
Institut Laue Langevin, Grenoble, Frankreich
Tel. +33 (0)476 207622,
E-Mail: schnecke@ill.fr oder emanuel.schneck@tum.de

Prof. Dr. Roland Netz
Fachbereich Physik der Freien Universität Berlin

Tel.: 030 838-55737

E-Mail: rnetz@physik.fu-berlin.de

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de/die-tum/aktuelles/pressemitteilungen/lang/article/30028/
http://www.physik.fu-berlin.de/en/einrichtungen/ag/ag-netz
http://www.pnas.org/cgi/doi/10.1073/pnas.1205811109

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Parasit tarnt sich durch Umstrukturierung
18.10.2018 | Ludwig-Maximilians-Universität München

nachricht Was macht Graphen in der Lunge?
18.10.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2018

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nanodiamanten als Photokatalysatoren

18.10.2018 | Materialwissenschaften

Schichten aus Braunschweig auf dem Weg zum Merkur

18.10.2018 | Physik Astronomie

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics