Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im Reissverschlussverfahren: Wie Zellen neue Blutgefässe bilden

03.09.2018

Die Blutgefässbildung beruht auf der Fähigkeit der Gefässzellen, sich zu bewegen und dabei trotzdem fest miteinander verbunden zu bleiben. Dadurch können die Gefässe wachsen und sich verzweigen, ohne dass Blut austritt. In «Nature Communications» beschreiben Wissenschaftler vom Biozentrum der Universität Basel, wie dies vonstattengeht: Das Zellskelett schiebt die Zelle zunächst ein Stück vorwärts und danach schliesst ein Ankerprotein wie ein Reissverschluss den Spalt zur Nachbarzelle.

Die Blutgefässe bilden ein weit verzweigtes Versorgungsnetzwerk, das unseren Körper von Kopf bis Fuss durchzieht. Sie sind die Leitungsbahnen für Blutzellen und transportieren Sauerstoff und Nährstoffe in jedes einzelne Organ.


Blutgefässsystem in einem zwei Tage alten Zebrafischembryo (Magenta: Endothelzellen, Hellblau: Blutzellen).

Universität Basel, Biozentrum

Im Embryo entstehen die Blutgefässe an vielen verschiedenen Orten gleichzeitig, verbinden sich miteinander und formen so ein komplexes Netzwerk. Das Gefässwachstum geht dabei von sogenannten Endothelzellen aus. Diese können als Gruppe aus einem Gefäss auswandern und neue Röhren, die Kapillaren, bilden.

Das Team von Prof. Markus Affolter vom Biozentrum der Universität Basel verwendet den Zebrafisch als Modellorganismus, um die Entstehung von Blutgefässen zu untersuchen. In ihrer aktuellen Studie zeigen die Wissenschaftler nun, dass sich die Endothelzellen bewegen können ohne sich dabei loszulassen. Wären die Zellen dazu nicht in der Lage, würde es bei der Gefässbildung zu Einblutungen ins umliegende Gewebe kommen.

Gefässbildung: Endothelzellen organisieren sich ständig um

Der durchsichtige Embryo des Zebrafisches erlaubt den Forschern, die Entwicklungsschritte der Blutgefässe live im lebenden Organismus zu beobachten. So zeigen hochaufgelöste Zeitraffer-Aufnahmen, dass sich die Endothelzellen aufeinander zubewegen um eine Kapillare zu formen und dass sie sich in den noch jungen Gefässen kontinuierlich umorganisieren. Diesen Prozess hat sich Dr. Heinz-Georg Belting, Leiter der Studie, genauer angeschaut.

Migration und Verknüpfung von Gefässzellen

Bei der Umlagerung der Endothelzellen im entstehenden Gefäss ist es wichtig, dass sich die Zellen verlängern und beim Fortbewegen die Verbindung zur Nachbarzelle ständig aufrechterhalten. Dies gelingt mithilfe des Zellskeletts sowie dem Ankerprotein VE-Cadherin. «Diese beiden Spieler müssen bei der Zellmigration eng zusammenarbeiten», sagt Belting.

«Das Zytoskelett macht dabei den ersten Schritt, es sorgt dafür, dass sich die Zellen verlängern. Anschliessend verankert VE-Cadherin den vorgestülpten Zellsaum mit der Nachbarzelle. Ein weiteres Protein stabilisiert am Ende die Verankerung. Dieser Vorgang läuft wieder und wieder ab und so kriecht die Zelle langsam voran.» Im Prinzip funktioniert das Ganze wie ein Reissverschluss, sobald sich die Zelle ein Stück vorwärtsgeschoben hat, schliesst sich der Spalt zur benachbarten Endothelzelle.

Plastizität gewährleistet Wachstum und Anpassung

Dass die Endothelzellen während der Blutgefässentwicklung so beweglich zueinander und dennoch immer fest miteinander verbunden sind, gewährleistet die Plastizität des Gefässes unter Beibehaltung der Stabilität. «Die Eigenschaft der Endothelzellen, sich gegenseitig zu erkennen, zu wandern und sich miteinander zu verknüpfen, erlaubt ein unbeschadetes Wachstum. Zudem können sich die Blutgefässe dadurch an unterschiedliche Bedingungen, wie zum Beispiel Blutdruckschwankungen anpassen», so Belting «Diese Flexibilität spielt ebenfalls eine Rolle bei der Wundheilung, bei Entzündungen und der Immunabwehr.»

Wissenschaftliche Ansprechpartner:

Prof. Dr. Markus Affolter, Universität Basel, Biozentrum, Tel. +41 61 207 20 72, E-Mail: markus.affolter@unibas.ch

Dr. Katrin Bühler, Universität Basel, Kommunikation Biozentrum, Tel. +41 61 207 09 74, E-Mail: katrin.buehler@unibas.ch

Originalpublikation:

Ilkka Paatero, Loïc Sauteur, Minkyoung Lee, Anne K. Lagendijk, Daniel Heutschi, Cora Wiesner, Camilo Gúzman, Dimitri Bieli, Benjamin M. Hogan, Markus Affolter & Heinz-Georg Belting
Junction-based lamellipodia drive endothelial cell rearrangements in vivo via a VE-cadherin-F-actin based oscillatory cell-cell interaction
Nature Communications (2018), doi: 10.1038/s41467-018-05851-9

Dr. Katrin Bühler | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Berichte zu: Blutzellen Embryo Endothelzellen Nachbarzelle Plastizität Zelle Zellen endothelial cell

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Betazellfunktion im Tiermodell wiederhergestellt: Neue Wirkstoffkombination könnte Diabetes-Remission ermöglichen
21.02.2020 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Darmkrebs: Erhöhte Lebenserwartung dank individueller Therapien
20.02.2020 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics