Hüpfende Kristalle – Kinematische Analyse des lichtinduzierten Springens von Kristallen

Mit UV-Licht bestrahlte Kristalle können die zugeführte Energie auf verschiedenen Wegen abbauen und sich dabei auch &quot;fortbewegen&quot;.<br>(c) Wiley-VCH<br>

Wissenschaftler aus den Vereinigten Arabischen Emiraten und Russland haben Kristalle, die bei Bestrahlung mit Licht in Bewegung geraten, systematisch unter die Lupe genommen. In der Zeitschrift Angewandte Chemie stellen sie die erste quantitative kinematische Analyse dieses als photosalienten Effekt bezeichneten Phänomens vor.

Bei Bestrahlung mit UV-Licht springen, rotieren und rollen mikrometer- bis millimetergroße Kristalle der Cobalt-Koordinationsverbindung [Co(NH3)5(NO2)]Cl(NO3) und legen dabei Distanzen zurück, die mehr als 1000mal größer sind als sie selbst. Warum tun sie dies?

Der Nitrit-Ligand (NO2) ist normalerweise über sein Stickstoffatom an das zentrale Cobalt-Ion des Komplexes gebunden. Bei Bestrahlung löst sich diese Bindung, der Ligand dreht sich ein Stück und bindet dann stattdessen mit einem seiner Sauerstoffatome. Diese Isomerisierung erzeugt eine Spannung im Kristall, die durch Bewegungen und Brüche abgebaut wird. Die Kristalle hüpfen und können sogar explodieren.

Das Team um Panèe Naumov (New York University Abu Dhabi) und Elena V. Boldyreva (Russische Akademie der Wissenschaften und Staatliche Universität Nowosibirsk) hat diesen Effekt jetzt systematisch mit einer an ein Mikroskop montierten Hochgeschwindigkeitskamera analysiert. Die Wissenschaftler unterscheiden folgende Phänomene: 1) Eine Spaltung des Kristalls in zwei etwa gleich große Stücke, 2) das Absplittern kleinerer Bruchstücke, 3) eine Explosion des Kristalls, 4) eine Fortbewegung ohne sichtbare Abspaltungen oder Abheben von der Unterlage, 5) Rollen oder Hüpfen. Daraus resultieren zum Teil komplexe Bewegungsmuster des Kristalls bzw. seiner Bruchstücke.

Die zurückgelegte Distanz hängt von der Länge und Intensität der Bestrahlung ab. Die Kristalle springen erst nach einer gewissen Latenzzeit, in der sich offensichtlich eine Spannung aufbaut, die sich bei Erreichen eines Schwellenwerts auf einmal entlädt. Kleinere Kristalle fangen früher zu hopsen an als größere. Interessanterweise bestimmt die Bestrahlungsstärke auch den Typ des Effekts. Mittlere Stärken lösen vor allem Rollen und Hüpfen aus, höhere Abspaltungen von Bruchstücken, bis die Kristalle bei sehr starker Bestrahlung vornehmlich in zwei gleich große Stücke gespalten werden.

Die Wissenschaflter sind überzeugt, dass den Effekten ein kooperativer Mechanismus zugrunde liegt. Durch die Drehung einzelner Liganden treten kleine intramolekulare Störungen auf, die sich vermutlich über das Netz von Wasserstoffbrückenbindungen zwischen den Ionen innerhalb des Kristallgerüsts ausbreiten und verstärken. Dieses Bindungsnetz wirkt wie eine Feder, die durch die Bestrahlung aufgezogen wird und durch die Bewegung oder Kristallspaltung wieder relaxiert. Die Steifigkeit der „Federn“ wurde in exakten Einkristall-Brechungsexperimenten bestimmt, bei denen die Proben hohem Druck ausgesetzt wurden.

Diese Umwandlung von Lichtenergie in eine mechanische Bewegung könnte für das Design von Materialien interessant sein, die die Bewegung von Tieren oder dynamischen technischen Bauteilen nachahmen können, etwa in Nanomaschinen.

Angewandte Chemie: Presseinfo 30/2013

Autor: Panèe Naumov, New York University Abu Dhabi (United Arab Emirates), https://nyuad.nyu.edu/research/centers-institutes/naumov-group.html

Angewandte Chemie, Permalink to the article: http://dx.doi.org/10.1002/ange.201303757

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany

Media Contact

Dr. Renate Hoer GDCh

Weitere Informationen:

http://presse.angewandte.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer