Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Homburger Wissenschaftler an Forschungsprojekt zur Signalübertragung in der Netzhaut beteiligt

01.07.2011
Die Netzhaut des menschlichen Auges, die einfallendes Licht in Nervenimpulse umwandelt und so Sehen ermöglicht, ist eine sehr leistungsfähige und hochkomplexe Gewebestruktur. Daher ist sie für Störungen anfällig, die bis zur Erblindung führen können.

Ein internationaler Forscherverbund, dem Professor Dr. Frank Schmitz vom Institut für Anatomie und Zellbiologie in Homburg angehört, untersucht nun, wie die Signalübertragung in der Netzhaut im Einzelnen vor sich geht. Aus den Forschungsergebnissen erhoffen sich die Wissenschaftler auch neue Erkenntnisse über die Ursachen von Netzhaut-Erkrankungen.

Die drei beteiligten Teams werden vom International Human Frontier Science Program (HFSP) drei Jahre lang mit 350.000 US-Dollar jährlich gefördert.

Das Auge mit der Netzhaut als Licht-sensitiver Struktur ist das wichtigste Sinnesorgan des menschlichen Körpers. Leistungsfähigkeit und Dynamik der Netzhaut sind enorm: Ihre Sinneszellen wandeln das auftreffende Licht in elektrische Signale um (Phototransduktion), die von den Synapsen, den Kontaktstellen zwischen verschiedenen Nervenzellen, verarbeitet und weitergeleitet werden.

Die hohen Anforderungen, die der Sehprozess an die Strukturen der Netzhaut stellt, macht dieses auf Hochleistung getrimmte System auch anfällig für Störungen, die zu Erkrankungen der Netzhaut bis hin zur Erblindung führen können. Zu diesen schweren Erkrankungen gehören beispielsweise die Retinitis pigmentosa und verschiedene Typen der Zapfen-Stäbchen-Dystrophien, bei denen die Photorezeptoren absterben, sowie die Lebersche kongenitale Amaurose, ein Funktionsverlust der Netzhaut, der bereits im Kindesalter zur Erblindung führt.

Wie die Signalverarbeitung in den Synapsen der reifen und der sich entwickelnden Netzhaut genau funktioniert, wollen nun die Wissenschaftler des Forschungsverbundes herausfinden. Welche Proteine sind an der Signalübermittlung beteiligt, und wie arbeiten diese Proteine in der Synapse? Das sind einige der Fragen, die sie mit genetischen, physiologischen und modernen bildgebenden Verfahren (beispielsweise mit der Zwei-Photonen-Mikroskopie am lebenden Gewebe) untersuchen wollen. Von ihrer Zusammenarbeit erhoffen sich die drei beteiligten Forschergruppen ein besseres Verständnis von Eigenschaften und Dynamik der Signalübertragung in der Netzhaut, um daraus mögliche Ursachen von Netzhaut-Erkrankungen abzuleiten.

Neben dem Homburger Wissenschaftler Professor Dr. Frank Schmitz gehören dem internationalen Forscherkonsortium Professor Leon Lagnado (MRC, Cambridge, UK) und Professor Rachel Wong (University of Washington, Seattle, USA) an. Das International Human Frontier Science Program (HFSP), das die Förderung komplexer biologischer Forschungsthemen unterstützt, stufte ihren gemeinsamen Antrag über die Erforschung synaptischer Erregungsübertragung auf Platz eins von 22 geförderten Projekten ein.

Für weitere Informationen wenden Sie sich bitte an:
Dr. Frank Schmitz,
Professor für Anatomie und Zellbiologie,
Universität des Saarlandes, Medizinische Fakultät
Institut für Anatomie und Zellbiologie
66421 Homburg/Saar
Tel. 06841 / 16-26012
E-Mail: frank.schmitz@uks.eu

Gerhild Sieber | idw
Weitere Informationen:
http://www.uks.eu
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics