Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hohensteiner Forscher erzielen Fortschritt bei der Biotoleranz textiler Implantate

07.05.2010
Stammzellen regen Gefäßneubildung an und sorgen so für optimiertes Einwachsen von Textilimplantaten

In der Regenerationsmedizin spielt die Verträglichkeit eines textilen Implantats im Körper – die so genannte Biotoleranz – eine wichtige Rolle.



Schema: Mit Stammzellen besiedelte Textilfasern
sondern Signalmoleküle ab, welche das
Aussprossen neuer Kapillaren aus bestehenden
Gefäßen anregen. Bilder: iStockphoto.com/bubaone/Hohenstein


Textilimplantate werden jedoch nicht immer vom Körper toleriert. Selbst moderne Implantate aus resorbierbaren Biopolymeren, wie z. B. Polymilchsäure, bauen sich zwar nach einer gewissen Zeit im Körper ab, doch zerfallen sie in saure Einzelbestandteile. Sie sorgen rund um den Implantationsort mitunter für erhebliche Probleme, die von Entzündungen bis hin zu Abstoßungsreaktionen reichen können. Ein deshalb für die Biotoleranz von Implantaten entscheidender Faktor ist die schnelle Neubildung von Blutgefäßen am Implantationsort (die so genannte Angiogenese). Neue Kapillaren sorgen dafür, dass die sauren Zerfallsprodukte bioresorbierbarer Textilimplantate rasch abtransportiert werden können.

Zugleich gewährleistet die neue Blutversorgung, dass auch die am Gewebeaufbau beteiligten Zellen ausreichend mit Nährstoffen versorgt werden und das Implantat einwächst, ohne als Fremdkörper abgekapselt zu werden. Mit der Frage, wie sich die Gefäßneubildung gezielt an textilen Implantaten anregen lässt, beschäftigt sich das Institut für Hygiene und Biotechnologie (IHB) an den Hohenstein Instituten bereits seit Langem. Erst kürzlich konnte das von Prof. Dr. Dirk Höfer geleitete Forscherteam aus Medizinern und Humanbiologen zeigen, dass sich speziell modifizierte Textilfasern auch als Träger für humane adulte Stammzellen eignen, auf Basis derer sich neues, gesundes Gewebe entwickeln kann.

Nun ist den Hohensteiner Wissenschaftlern auch im Hinblick auf die Verträglichkeit von Implantaten ein Kardinalexperiment gelungen: Mit Stammzellen besiedelte Textilien wurden auf die mit Gefäßen durchzogene Membran eines Hühnereis gegeben. Bei diesem Versuch handelt es sich um eine tierversuchsfreie Ersatzmethode, das so genannte Chorion-Allantois-Membran (CAM)-Modell. Der Gefäßreichtum der CAM und die fehlende Immunkompetenz ermöglichen optimale Untersuchungen an einem funktionalen Kreislaufsystem. Ziel der Hohensteiner Wissenschaftler war es, dass das Implantat selbst die nötigen Wachstumsfaktoren ausschüttet, welche die Neubildung von Blutgefäßen anregen. Diese Aufgabe sollten die Stammzellen übernehmen.

Zunächst beschichteten die Forscher die Fasern der Textilimplantate mit spezifischen Adhäsionsmolekülen und besiedelten diese anschließend mit humanen adulten Stammzellen, von denen bekannt ist, dass sie Wachstumsfaktoren zur Anregung neuer Gefäße absondern. Um das Schicksal der eingesetzten Stammzellen auf den Fasern exakt verfolgen zu können, wurden die Alleskönner zuvor gentechnisch modifiziert, so dass sie einen roten Fluoreszenzfarbstoff produzieren, der es erlaubt, die Integration der Stammzellen ins umliegende Gewebe visuell zu verfolgen.

In mehreren Versuchsreihen konnten die Forscher auf diese Weise eine gerichtete Gefäßeinsprossung in das textile Implantat hinein beobachten, sowohl makro-, als auch mikroskopisch. Neue Blutgefäße wuchsen in das Implantat und bildeten dort ein funktionelles kapillares Netzwerk. Wurden die Textilien mit Bindegewebszellen besiedelt die keine Wachstumsfaktoren ausschütten, blieb die Gefäßeinsprossung hingegen aus.

Die neuen Forschungsergebnisse des Instituts für Hygiene und Biotechnologie lassen sich künftig dazu nutzen, mit Hilfe von patienteneigenen Stammzellen biologisierte Textilimplantate (wie beispielsweise Herniennetze) schneller und ohne Abstoßungsreaktionen in das Gewebe des Patienten zu integrieren und somit zerstörtes Körpergewebe erfolgreich zu regenerieren. Das in Hohenstein angewandte System ermöglicht es darüber hinaus, zahlreiche weitere Aspekte der Durchblutung textiler Implantate zu beleuchten und diese routinemäßig für den medizinischen Einsatz zu optimieren. Dies stellt einen wichtigen Meilenstein für die Weiterentwicklung der textilen Regenerationsmedizin dar. Die Hohensteiner Forscher beabsichtigen, die Ergebnisse in einem wissenschaftlichen Fachjournal zu veröffentlichen.

Kontaktadressen für nähere Informationen:

Prof. Dr. Dirk Höfer
(Direktor des Instituts für Hygiene und Biotechnologie an den Hohenstein Instituten)

E-Mail: d.hoefer@hohenstein.de

Dr. Timo Hammer
E-Mail: t.hammer@hohenstein.de

Helmut Müller | Hohenstein Institute
Weitere Informationen:
http://www.hohenstein.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues über ein Pflanzenhormon
07.12.2018 | Julius-Maximilians-Universität Würzburg

nachricht Selbstlernende Netzwerke lassen Forscher mehr sehen
07.12.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Supercomputer ohne Abwärme

Konstanzer Physiker eröffnen die Möglichkeit, Supraleiter zur Informationsübertragung einzusetzen

Konventionell betrachtet sind Magnetismus und der widerstandsfreie Fluss elektrischen Stroms („Supraleitung“) konkurrierende Phänomene, die nicht zusammen in...

Im Focus: Drei Nervenzellen reichen, um eine Fliege zu steuern

Uns wirft so schnell nichts um. Eine Fruchtfliege kann dagegen schon ein kleiner Windstoß vom Kurs abbringen. Drei große Nervenzellen in jeder Hälfte des Fliegenhirns reichen jedoch aus, um die Fliege mit Hilfe visueller Signale wieder auf Kurs zu bringen.

Bewegen wir uns vorwärts, zieht die Umwelt in die entgegengesetzte Richtung an unseren Augen vorbei. Drehen wir uns, verschiebt sich das Bild der Umwelt im...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Drei Komponenten auf einem Chip

Wissenschaftlern der Universität Stuttgart und des Karlsruher Institutes für Technologie (KIT gelingt wichtige Weiterentwicklung auf dem Weg zum Quantencomputer

Quantencomputer sollen bestimmte Rechenprobleme einmal sehr viel schneller lösen können als ein klassischer Computer. Einer der vielversprechendsten Ansätze...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Großes Interesse an erster Fachtagung

07.12.2018 | Veranstaltungen

Entwicklung eines Amphibienflugzeugs

04.12.2018 | Veranstaltungen

Neue biologische Verfahren im Trink- und Grundwassermanagement

04.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erstmalig in Deutschland: Erfolgreiche Bestrahlungstherapie lebensbedrohlicher Herzrhythmusstörung

07.12.2018 | Medizintechnik

Nicht zu warm und nicht zu kalt! Seminar „Thermomanagement von Lithium-Ionen-Batterien“ am 02.04.2019 in Aachen

07.12.2018 | Seminare Workshops

Seminar „Magnettechnik - Magnetwerkstoffe“ vom 19. – 20.02.2019 in Essen

07.12.2018 | Seminare Workshops

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics