Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochgeschwindigkeitsneuronen im Hirnstamm gefunden

24.10.2017

Für die Fortbewegung mit hoher Geschwindigkeit ist eine klar abgegrenzte Untergruppe von Neuronen im Hirnstamm zwingend erforderlich. Interessanterweise sind diese Hochgeschwindigkeitsneuronen mit anderen Neuronen vermischt, die ein sofortiges Anhalten beim Laufen hervorrufen können. Wie bestimmte Gruppen von Hirnstammneuronen vollständige motorische Programme regulieren können, zeigt eine Studie in «Nature» von Forschende des Biozentrums der Universität Basel und des Friedrich Miescher Institute for Biomedical Research (FMI).

Stellen Sie sich vor, dass Sie an einem sonnigen Sonntagnachmittag gemütlich spazieren gehen oder am Montagmorgen mit voller Geschwindigkeit dem Bus zur Arbeit nachrennen. Beide Fortbewegungsarten basieren auf einem perfekten Wechselspiel zwischen Armen und Beinen.


Wenn wir einem Bus nachrennen, müssen Muskeln fehlerfrei zusammenarbeiten, um hohe Geschwindigkeiten zu erreichen. Nun zeigt sich, dass ein bestimmter Nervenzelltyp im Hirnstamm hilft, Hochgeschwindigkeitsbewegungen durchzuführen.

Bild: jukov/istockphoto

Quelle: Uni Basel

Jedoch ist die Geschwindigkeit, mit der dies abläuft, sehr unterschiedlich. Ein Forschungsteam um Silvia Arber, Professorin am Biozentrum der Universität Basel und Gruppenleiterin am FMI, konnte nun zeigen, dass ein bestimmter Nervenzelltyp im Hirnstamm für die schnelle Fortbewegung von wesentlicher Bedeutung ist.

Hirnstamm spielt eine wichtige Rolle in der Bewegungssteuerung

Alle Arten von Bewegung – einschliesslich der Fortbewegung durch Gehen oder Rennen – werden auf verschiedenen Ebenen des Nervensystems gesteuert. Das entscheidende Befehlsnetz für Körperbewegungen befindet sich im Rückenmark.

Dort übertragen Nervenzellen – sogenannte Motoneuronen – ein motorisches Signal an Muskelfasern, damit diese sich zusammenziehen. Allerdings kann das Rückenmark allein keine Bewegung hervorbringen, was man am deutlichsten bei einem Patienten mit einer Rückenmarksverletzung sehen kann. In diesem Fall können unterhalb der Verletzung keine Bewegungen mehr gesteuert werden.

Nervennetzwerke im Rückenmark erhalten vom Gehirn wichtige Anweisungen, wann und wie eine Bewegung auszuführen ist. Neuere Arbeiten zeigen immer deutlicher, welche grundlegenden Funktionen dabei der Hirnstamm übernimmt. Aber warum war es so schwierig, diese Prinzipien aufzudecken?

Es hat sich herausgestellt, dass der Schlüssel zur Identifizierung von Hirnstammneuronen im Hinblick auf ihre jeweilige Funktion in der sehr sorgfältigen Entflechtung der Zelltypen liegt. Auf dieser Grundlage stellen Silvia Arber und ihr Team wichtige neue Erkenntnisse vor, die in «Nature» veröffentlicht wurden.

Auf den Ort und den Neuronentyp kommt es an

Die Autoren wiesen mit neusten Methoden nach, dass der Hirnstamm der Maus in der Tat aus einem Gemisch verschiedener Nervenzellgruppen besteht, die sich klar voneinander unterscheiden lassen. So konnten die verschiedenen Hirnstammneuronen anhand der von ihnen freigesetzten Neurotransmitter unterschieden werden. Zusätzlich war aber auch die Lage im Hirnstamm, die Verbindungen, die sie zu Neuronen im Rückenmark herstellen, sowie der Input, den sie von anderen Hirnregionen erhalten, verschieden.

Am interessantesten ist, dass sich in den untersuchten Hirnstammregionen positiv wirkende, anregende Neuronen, mit negativ wirkenden, hemmenden Neuronen ungeordnet vermischen. Auffallend war, dass ihnen keine klare Funktion zugeordnet werden konnte, wenn alle diese Neuronen ohne sorgfältige Entflechtung zusammen untersucht wurden.

Neuronen für verschiedene Funktionen liegen nebeneinander

Paolo Capelli, Doktorand in Arbers Gruppe und Erstautor der Studie, erinnert sich, dass der aufregendste Durchbruch kam, als er begann, die identifizierten Neuronentypen getrennt voneinander zu untersuchen: «Als wir Neuronen aktivierten, die den anregenden Neurotransmitter Glutamat in einer kleinen Region des Hirnstamms namens Nucleus paragigantocellularis lateralis (LPGi) freisetzen, konnten wir Laufbewegungen auslösen. Dies war nicht der Fall bei Aktivierung von Neuronen in anderen benachbarten Regionen.»

Umgekehrt beobachteten die Neurobiologen eine rasche Verlangsamung der Bewegung, wenn sie die dazwischen eingestreuten hemmenden Neuronen aktivierten. Wie Capelli betont, war es «absolut faszinierend zu sehen, wie die Stimulation von einer Neuronenpopulation im Hirnstamm ein komplettes motorisches Programm hervorrufen kann, das Vorder- und Hinterbeine in einer Weise bewegt, die von der natürlichen Fortbewegung nicht zu unterscheiden ist.»

Weitere Experimente zeigten, dass die identifizierten anregenden Neuronen, deren Stimulation Laufbewegungen hervorruft, auch für die natürliche Fortbewegung bei hohen Geschwindigkeiten erforderlich sind. Hohe Geschwindigkeiten konnten ohne diese Neuronen nicht erzielt werden.

Erkenntnis dank sorgfältiger Identifikation der Neuronentypen

Diese Erkenntnisse bedeuten einen wichtigen Fortschritt für ein besseres Verständnis der neuronalen Vorgänge, die bei der Bewegungskontrolle im Hirnstamm aktiv sind. «Wir wissen jetzt, dass die unterschiedlichen Bewegungsfunktionen im Hirnstamm bis anhin hinter der Vielfalt vermischter neuronaler Subpopulationen verborgen waren. Erst wenn man sie in Subpopulationen aufteilt, kann man ihre Funktion klären», so Silvia Arber.

Langfristig können diese Erkenntnisse auch einen Ansatzpunkt bieten, um bei Krankheiten zu intervenieren, bei welchen die Bewegung aufgrund von Defekten in höheren motorischen Zentren beeinträchtigt ist, wie zum Beispiel bei der Parkinson-Krankheit.

Originalbeitrag

Paolo Capelli, Chiara Pivetta, Maria Soledad Esposito & Silvia Arber
Locomotor speed control circuits in the caudal brainstem
Nature (2017), doi: 10.1038/nature24064

Weitere Auskünfte

Prof. Dr. Silvia Arber, Universität Basel, Biozentrum, Tel. +41 61 207 20 57, E-Mail: silvia.arber@unibas.ch
Dr. Sandra Ziegler Handschin, Friedrich Miescher Institute for Biomedical Research, Kommunikation, Tel. +41 61 696 15 39, E-Mail: sandra.ziegler@fmi.ch

Weitere Informationen:

https://www.unibas.ch/de/Aktuell/News/Uni-Research/Hochgeschwindigkeitsneuronen-...

Reto Caluori | Universität Basel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren
16.11.2018 | Universität Bayreuth

nachricht Günstiger Katalysator für das CO2-Recycling
16.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics