Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hitzeschutz für Proteine - Wie Bakterien sich gegen Hitze schützen

18.06.2010
Weil es klein und robust ist und sich schnell vermehrt, ist das Darmbakterium Escherichia coli eines der wichtigsten „Arbeitspferde“ der Biotechnologie. Es produziert für uns Insulin und viele weitere pharmazeutisch wichtige Stoffe.

Normalerweise fühlt sich das Bakterium bei 37° Celsius am wohlsten. Höhere Temperaturen verursachen dem Organismus Stress, Temperaturen über 46° Celsius sind bereits tödlich. Wissenschaftler der Technischen Universität München (TUM) haben nun an E. coli Bakterien untersucht, wie sich Organismen durch Evolution an höhere Temperaturen anpassen. In der aktuellen Ausgabe des Journal of Biological Chemistry berichten sie über ihre Ergebnisse.

Das Bakterium Escherichia coli ist nicht nur im menschlichen Darm zu Hause, es ist auch eines der wichtigsten „Arbeitspferde“ im Labor. Eine Vielzahl pharmazeutisch wichtiger Substanzen werden inzwischen biotechnologisch durch gentechnisch veränderte E. coli-Bakterien hergestellt, beispielsweise das Insulin. Während in der chemischen Produktion die Faustregel gilt, dass eine um zehn Grad höhere Temperatur eine Verdoppelung der Reaktionsgeschwindigkeit zur Folge hat, sind die Verhältnisse in der Biotechnologie viel komplizierter. Zwar steigt die Produktivität von E. coli bei höheren Temperaturen zunächst, oberhalb von 42° Celsius gerät der Organismus jedoch zunehmend unter Stress und produziert weniger brauchbare Proteine. Temperaturen über 46° Celsius sind für Wildtyp-E. coli bereits tödlich.

Dem Team um Jeannette Winter, Biochemikerin und Leiterin der Emmy-Noether-Gruppe „Oxidative Stress“ im Department Chemie der TU München, gelang es nun, E. coli-Bakterien durch Evolution über mehrere Jahre hinweg stufenweise eine sehr viel höhere Hitzeresistenz anzuzüchten. Ihre Bakterien wachsen mittlerweile bei Temperaturen von 48,5° Celsius. Hier scheint aber für den Organismus E. coli eine natürliche Grenze zu existieren. Höhere Wachstumstemperaturen erreichten die Forscher nicht.

Im Vergleich zu einer bei 37° Celsius aus den gleichen Vorfahren gezüchteten Kontrollpopulation enthielten die hitzeresistenten Bakterien das als Hitzeschutzprotein bekannte GroE schon bei normalen Bedingungen in 16-fach höherer Konzentration. Allerdings hat die Hitzeresistenz ihren Preis: Da der Organismus durch den andauernden Stress Veränderungen im Erbgut trägt und sehr viel Energie in die Produktion von Hitzeschutzproteinen steckt, wächst er insgesamt langsamer als seine Vorfahren.

Dahinter steht ein komplexer Prozess: Jedes Protein besteht aus einer langen Kette von Aminosäuren. Erst durch kunstvolle Faltung zu einer dreidimensionalen Struktur wird daraus das funktionierende Protein. Dabei helfen Chaperone genannte Proteine, wie das GroE. Es stabilisiert Proteine, die bei höheren Temperaturen instabil werden und hilft, durch Mutationen instabiler gewordene Proteine trotzdem in ihre funktionale Form zu bringen. „Die Fähigkeit der hitzeresistenten Bakterien, wesentlich höhere Konzentrationen an GroE produzieren zu können, ist ein entscheidender Faktor für die Überlebensfähigkeit unter diesen Bedingungen“, sagt Jeannette Winter.

Über die evolutionsbiologischen Aspekte hinaus liefert die Untersuchung der Arbeitsgruppe wertvolle Hinweise darauf, wie sich Organismen an veränderte Umweltbedingungen anpassen. „Ein besseres Verständnis der Arbeit der Chaperone könnte auch neue Wege für die gezielte Züchtung von Organismen für spezielle Aufgaben öffnen“, sagt Jeannette Winter. „Das sind nicht nur Bakterien zur Produktion von pharmazeutisch interessanten Proteinen sondern beispielsweise auch Bakterien, die unter harten Umweltbedingungen Umweltgifte abbauen können.“

Die Arbeiten wurden gefördert aus Mitteln des Exzellenzclusters Center for Integrated Protein Science Munich, dem Elitenetzwerk Bayern, dem Fonds der chemischen Industrie sowie der Deutschen Forschungsgemeinschaft (DFG; SFB 594 und Emmy-Noether Programm).

Original-Publikation:

Evolution of Escherichia coli for Growth at High Temperatures,
Birgit Rudolph, Katharina M. Gebendorfer, Johannes Buchner, and Jeannette Winter
Journal of Biological Chemistry, 2010 285: 19029-19034
Ansprechpartnerin:
Dr. Jeannette Winter
Technische Universität München
Department Chemie
Lichtenbergstr. 4 - 85747 Garching
Tel.: 089 289 13191 - Fax: 089 289 13345
E-Mail: Jeannette.Winter@ch.tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://portal.mytum.de/welcome

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht CeMM Studie gibt Einblick in die Funktionsweise eines wichtigen Genregulators
02.06.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Neue Therapien im Kampf gegen Krebs: Jagd auf lebensbedrohliche Metastasen
02.06.2020 | Fraunhofer-Institut für Toxikologie und Experimentelle Medizin ITEM

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Messung verschärft altes Problem

Seit Jahrzehnten rätseln Astrophysiker über zwei markante Röntgen-Emissionslinien von hochgeladenem Eisen: ihr gemessenes Helligkeitsverhältnis stimmt nicht mit dem berechneten überein. Das beeinträchtigt die Bestimmung der Temperatur und Dichte von Plasmen. Neue sorgfältige, hoch-präzise Messungen und Berechnungen mit modernsten Methoden schließen nun alle bisher vorgeschlagenen Erklärungen für diese Diskrepanz aus und verschärfen damit das Problem.

Heiße astrophysikalische Plasmen erfüllen den intergalaktischen Raum und leuchten hell in Sternatmosphären, aktiven Galaxienkernen und Supernova-Überresten....

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

Eine Forschungskooperation der Universität Konstanz unter Federführung von Professor Dr. Christof Hauck (Fachbereich Biologie) mit Beteiligung des Klinikum Konstanz, eines Konstanzer Diagnostiklabors und des Konstanzer Unternehmens myPOLS Biotec, einer Ausgründung aus der Arbeitsgruppe für Organische Chemie / Zelluläre Chemie der Universität Konstanz, hat ein neuartiges Covid-19-Schnelltestverfahren entwickelt. Dieser Test ermöglicht es, Ergebnisse in der Hälfte der Zeit zu ermitteln – im Vergleich zur klassischen Polymerase-Ketten-Reaktion (PCR).

Die frühe Identifikation von Patienten, die mit dem neuartigen Coronavirus (SARS-CoV-2) infiziert sind, ist zentrale Voraussetzung bei der globalen Bewältigung...

Im Focus: Textilherstellung für Weltraumantennen startet in die Industrialisierungsphase

Im Rahmen des EU-Projekts LEA (Large European Antenna) hat das Fraunhofer-Anwendungszentrum für Textile Faserkeramiken TFK in Münchberg gemeinsam mit den Unternehmen HPS GmbH und Iprotex GmbH & Co. KG ein reflektierendes Metallnetz für Weltraumantennen entwickelt, das ab August 2020 in die Produktion gehen wird.

Beim Stichwort Raumfahrt werden zunächst Assoziationen zu Forschungen auf Mond und Mars sowie zur Beobachtung ferner Galaxien geweckt. Für unseren Alltag sind...

Im Focus: Biotechnologie: Enzym setzt durch Licht neuartige Reaktion in Gang

In lebenden Zellen treiben Enzyme biochemische Stoffwechselprozesse an. Auch in der Biotechnologie sind sie als Katalysatoren gefragt, um zum Beispiel chemische Produkte wie Arzneimittel herzustellen. Forscher haben nun ein Enzym identifiziert, das durch die Beleuchtung mit blauem Licht katalytisch aktiv wird und eine Reaktion in Gang setzt, die in der Enzymatik bisher unbekannt war. Die Studie ist in „Nature Communications“ erschienen.

Enzyme – in jeder lebenden Zelle sind sie die zentralen Antreiber für biochemische Stoffwechselprozesse und machen dort Reaktionen möglich. Genau diese...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Messung verschärft altes Problem

02.06.2020 | Physik Astronomie

CeMM Studie gibt Einblick in die Funktionsweise eines wichtigen Genregulators

02.06.2020 | Biowissenschaften Chemie

Neue Therapien im Kampf gegen Krebs: Jagd auf lebensbedrohliche Metastasen

02.06.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics