Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hirntumoren: Gewebestammzelle wird zur Tumorstammzelle

01.04.2010
Schlüsselmolekül für die Krebsentstehung entdeckt

Wissenschaftler aus dem Deutschen Krebsforschungszentrum wiesen zum ersten Mal nach, dass bösartige Hirntumoren direkt aus Hirn-Stammzellen entstehen. Das Protein Tlx sorgt im erwachsenen Gehirn dafür, dass aus Gewebe-Stammzellen neue Nervenzellen entstehen.

Zuviel Tlx regt bei Mäusen die Bildung bösartiger Hirntumoren aus Hirn-Stammzellen an. Auch beim Glioblastom, dem bösartigsten Hirntumor des Menschen, spielt Tlx eine Rolle. Mit Tlx ist daher erstmalig ein möglicher Angriffspunkt für zielgerichtete Therapien gegen das gefährliche Glioblastom entdeckt.

Die "Wiege" neuer Nervenzellen im erwachsenen Gehirn ist gut bekannt: Es ist die so genannte subventrikulare Zone, eine Gewebeschicht entlang der seitlichen Hirnkammern. Hier sind die neuralen oder Hirn-Stammzellen angesiedelt, die im Bedarfsfall für die Bildung neuer Nervenzellen sorgen. Die subventrikulare Zone gilt lange schon auch als Keimzelle für eine bestimmte Art bösartiger Hirntumoren - die Gliome, deren gefährlichster Vertreter das Glioblastom ist.

Wissenschaftler aus den Abteilungen von Professor Dr. Günther Schütz und Professor Dr. Peter Lichter im Deutschen Krebsforschungszentrum zeigten kürzlich bei Mäusen, dass Hirn-Stammzellen in der subventrikularen Zone durch ein bestimmtes Molekül gekennzeichnet sind: Das Protein Tlx, ein so genannter Transkriptionsfaktor, regt die Aktivität verschiedener Gene an. Beim erwachsenen Tier wird Tlx ausschließlich in Hirn-Stammzellen gebildet. Schalteten die Wissenschaftler Tlx aus, so ließen sich keine Stammzellen im Gehirn mehr nachweisen und die Neubildung junger Nervenzellen versiegte. Das Funktionieren der Stammzellen ist offenbar von der Anwesenheit dieses Proteins abhängig.

In ihrer neuen Studie machten die Teams von Günther Schütz und Peter Lichter gemeinsam mit Professor Dr. Guido Reifenberger, Universität Düsseldorf, nun die Gegenprobe: Was passiert, wenn die Tlx-Produktion gesteigert wird? Durch einen molekularbiologischen Trick veranlassten die Forscher die Hirn-Stammzellen von Mäusen zur Tlx-Überproduktion. Die Folge war, dass die Zellteilungsaktivität in der subventrikulären Zone anstieg, die Zellen ihre angestammte Umgebung, die so genannte Stammzellnische, verließen und Glioblastom-ähnliche Gewebeveränderungen ausbildeten. Schalteten die Wissenschafter zusätzlich noch das Protein p53 als wichtigste Krebsbremse experimentell aus, so entstanden aus den Krebsvorläufern invasiv wachsende Glioblastome.

Darüber hinaus entdeckten die Wissenschaftler, dass Stammzellen mit gesteigerter Tlx-Produktion die Gefäßneubildung anregen. Dies ermöglicht den Zellen, in weiter entfernte Bereiche des Gehirns einzuwandern und so das typische korallenstockartige Wachstum des Glioblastoms zu erzeugen.

"Wir erkennen Hirn-Stammzellen spezifisch an ihrer Tlx-Produktion. Wenn wir diese ankurbeln, verwandelt sich die Gewebe-Stammzelle in eine Krebs-Stammzelle, aus der bösartige Glioblastome entstehen - daher können wir nun erstmals die Hirn-Stammzellen direkt für die Entstehung von Hirntumor-Stammzellen verantwortlich machen", erklärt Günther Schütz.

Die Wissenschaftler gehen davon aus, dass sie auf der Basis dieser Ergebnisse aus der zellbiologischen Grundlagenforschung neue Therapien gegen das gefährliche Glioblastom entwickeln können. Tlx scheint nicht nur im Mäuse-Gehirn eine verhängnisvolle Rolle zu spielen: Im Tumorgewebe von Glioblastom-Patienten entdeckten Lichter und Reifenberger, dass das Tlx-Gen häufig vervielfältigt ist und daher mehr Tlx-Protein gebildet wird. "Offenbar sind auch beim Menschen die Hirntumor-Stammzellen auf Tlx angewiesen. Daher können wir nun versuchen, Therapien zu entwickeln, die sich ganz spezifisch gegen Tlx-produzierende Zellen richten", beschreibt Schütz die nächsten Schritte. Mit den Mäusen, deren Hirnstammzellen zuviel Tlx produzieren, steht ihm ein ideales Modellsystem für solche Untersuchungen zur Verfügung.

Hai-Kun Liu, Ying Wang, Thorsten Belz, Dagmar Bock, Andrea Takacs, Bernhard Radlwimmer, Sebastian Barbus, Guido Reifenberger, Peter Lichter und Günther Schütz: The nuclear receptor tailless induces long term neural stem cell expansion and brain tumor initiation. Genes & Development, 1. April 2010

Das Deutsche Krebsforschungszentrum (DKFZ) ist die größte biomedizinische Forschungseinrichtung in Deutschland und Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren. Über 2.000 Mitarbeiter und Mitarbeiterinnen, davon 850 Wissenschaftler, erforschen die Mechanismen der Krebsentstehung und arbeiten an der Erfassung von Krebsrisikofaktoren.

Sie liefern die Grundlagen für die Entwicklung neuer Ansätze in der Vorbeugung, Diagnose und Therapie von Krebserkrankungen. Daneben klären die Mitarbeiter und Mitarbeiterinnen des Krebsinformationsdienstes (KID) Betroffene, Angehörige und interessierte Bürger über die Volkskrankheit Krebs auf. Das Zentrum wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert.

Dr. Stefanie Seltmann | idw
Weitere Informationen:
http://www.dkfz.de
http://www.dkfz.de/de/presse/pressemitteilungen/2010/images/DCX_308.jpg

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Was wir von Ameisen und Amöben über Koordination und Zusammenarbeit lernen können
13.08.2018 | Australisch-Neuseeländischer Hochschulverbund / Institut Ranke-Heinemann

nachricht Die künstliche Plazenta im Labor
13.08.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Arctic Ocean 2018 - Forscher untersuchen Wolken und Meereis in der Arktis

"Arctic Ocean 2018": So heißt die diesjährige Forschungsexpedition des schwedischen Eisbrechers ODEN in der Arktis, an der auch ein Wissenschaftler der Universität Leipzig beteiligt ist. Noch bis zum 25. September wollen die etwa 40 Forscher an Bord vor allem das mikrobiologische Leben im Ozean und im Meereis untersuchen und wie es mit der Wolkenbildung in der Arktis zusammenhängt.

Während der Fahrt durch die Arktis, die Ende Juli gestartet ist, sollen im Rahmen der Kampagne MOCCHA 2018 (Microbiology-Ocean-Cloud-Coupling in the Hight...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

Herausforderung China – Wissenschaftler aus der ganzen Welt diskutieren miteinander auf UW/H-Tagung

03.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltkleinster Transistor schaltet Strom mit einzelnem Atom in festem Elektrolyten

13.08.2018 | Energie und Elektrotechnik

Your Smartphone is Watching You: Gefährliche Sicherheitslücken in Tracker-Apps

13.08.2018 | Informationstechnologie

Was wir von Ameisen und Amöben über Koordination und Zusammenarbeit lernen können

13.08.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics