Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

HIRI- und JMU-Forscher visualisieren den Kampf zwischen Virus und Wirtszelle

11.07.2019

Neu entwickeltes Verfahren macht kürzlich aktivierte Gene innerhalb einzelner Zellen ausfindig

Zellen sind mit wirkungsvollen Abwehrmechanismen ausgestattet, um gegen Eindringlinge vorzugehen. Schlacht- und Bauplan sind in den Genen festgeschrieben, die bei einem feindlichen Angriff aktiviert werden müssen.


Grafische Darstellung der Einzelzellanalyse mittels scSLAM-seq.

HZI/HIRI/S. Pernitzsch

Wissenschaftler des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) in Würzburg, einem Standort des Braunschweiger Helmholtz-Zentrums für Infektionsforschung (HZI), und der Julius-Maximilians-Universität Würzburg entwickelten eine neue Methode namens scSLAM-seq, mit der sich die Aktivität tausender Gene in einzelnen Zellen untersuchen und über einige Stunden präzise verfolgen lässt.

Erstmals konnten die Forscher erklären, warum manche Zellen erfolgreich von einem Virus infiziert werden, andere hingegen nicht. Darüber hinaus gewannen sie grundlegend neue Erkenntnisse über die Regulation von Genen. Ihre Ergebnisse sind in der aktuellen Ausgabe des Fachmagazins Nature veröffentlicht.

Dringen Viren in unseren Körper ein – etwa bei einer Grippe oder einem Magen-Darm-Infekt – verändern sich die Abläufe in den betroffenen Zellen: Im ungünstigsten Fall übernimmt das Virus das Ruder, und die Zelle wird umprogrammiert. Sie produziert dann Virus-Bestandteile, und der Eindringling vermehrt sich explosionsartig. In einer anderen Zelle zieht aber womöglich das Virus den Kürzeren und wird durch die aktivierten Schutzmechanismen erfolgreich eliminiert.

Doch wie kommt es, dass die eine Zelle überrannt wird und die andere das Virus unter Kontrolle bringt? Wie schnell reagieren einzelne Zellen auf einen Virusangriff und welche schützenden Gene werden aktiviert?

„Zu diesen Fragen war auf Einzelzell-Ebene bislang kaum etwas bekannt“, sagt Dr. Antoine-Emmanuel Saliba vom Helmholtz-Institut für RNA-basierte Infektionsforschung (HIRI). „Mit unserer aktuellen Studie konnten wir bei der Beantwortung dieser Fragen ein großes Stück vorankommen.“

In enger Zusammenarbeit mit Prof. Florian Erhard vom Institut für Virologie und Immunbiologie der Julius-Maximilians-Universität Würzburg untersuchte das HIRI-Forscherteam um Saliba gemeinsam mit Prof. Lars Dölken, der an beiden Instituten tätig ist, wie sich die Genaktivität – die die Identität und den physiologischen Zustand einer Zelle widerspiegelt – nach einer Infektion mit dem Zytomegalievirus innerhalb einzelner infizierter Mauszellen verändert. Zytomegalieviren sind weit verbreitet, über 80 Prozent der Menschen sind infiziert.

Gesunden kann es in der Regel nichts anhaben, für Neugeborene oder Transplantationspatienten kann eine Infektion aber gefährlich werden und schwerwiegende neurologische Folgen nach sich ziehen. Mit einem häufig eingesetzten experimentellen Verfahren, der sogenannten Einzelzell-RNA-Sequenzierung (scRNAseq), ist es möglich zu bestimmen, welche Gene einer Zelle gerade aktiv sind. Kurzfristige Änderungen von Genaktivitäten, wie sie etwa bei einer Virusinfektion auftreten, können damit aber nur sehr begrenzt aufgespürt werden.

Zudem kann jede einzelne Zelle nur einmal untersucht werden. Somit blieb bisher unklar, wie einzelne Zellen auf äußere Einflüsse, zum Beispiel eine Virusinfektion, reagieren. Um die molekularen Vorgänge innerhalb einzelner infizierter Zellen zu untersuchen, entwickelten die Forscher nun eine neue Methode namens scSLAM-seq, mit der sie erstmals sichtbar machen können, welche Gene wie stark in einzelnen Zellen innerhalb weniger Stunden aktiviert werden.

Wird ein Gen aktiviert, wird sein Code in RNA (englisch: ribonucleic acid) übersetzt. Die RNA besteht aus vier unterschiedlichen Bausteinen, den organischen Basen Adenin, Cytosin, Guanin und Uracil. Diese sind wie auf einer Kette aufgereiht, und zwar in einer für das Ursprungsgen charakteristischen Kombination. Die RNA-Kette dient dann als Vorlage für die Herstellung eines Proteins, das eine bestimmte Funktion innerhalb der Zelle erfüllt.

scSLAM-seq sortiert RNA in alt und neu

Um unterscheiden zu können, welche RNA vor der Virusinfektion bereits vorhanden war und welche neu hinzugekommen ist, bedienten sich die Forscher eines Markierungstricks: Sie fügten zeitgleich mit dem infizierenden Virus eine im Vergleich zur natürlichen Variante chemisch leicht veränderte Form des RNA-Bausteins Uracil zum Nährmedium der Zellen hinzu.

Die Zellen bauten daraufhin das markierte Uracil in ihre neu hergestellte RNA ein. Nach zwei Stunden wurde das Experiment beendet. Über eine chemische Reaktion wurde das markierte Uracil in einen anderen RNA-Baustein, nämlich Cytosin, umgewandelt.

„In der RNA-Sequenz befindet sich dort, wo eigentlich Uracil eingebaut sein sollte, dann stattdessen Cytosin“, erklärt Dölken. „Die Idee, die dahintersteckt: Die RNA, die nach der Virusinfektion hergestellt wurde, besitzt nun eine Markierung, mit der wir sie bei der anschließenden RNA-Sequenzierung als neu identifizieren können.“ Mithilfe eines komplexen bioinformatischen Verfahrens untersuchten die Forscher die RNA jeder einzelnen Zelle, ordneten sie über 4000 bekannten Genen pro Zelle zu und trennten sie in neue und alte RNA auf. „Die Daten, die wir mit dem scSLAM-seq-Verfahren erheben können, sind spektakulär“, sagt Erhard.

„Wir können tatsächlich für jede einzelne Zelle feststellen, wie viel Prozent ihrer RNA innerhalb von zwei Stunden nach einer Störung – in diesem Fall einer Virusinfektion – neu hergestellt werden. Damit sind erstmals Dosis-Wirkungs-Analysen auf Einzelzellebene möglich.“ Insgesamt untersuchte das Forscherteam die RNA von 100 Einzelzellen.

„Das war bereits ausreichend, um einen gänzlich neuen Einblick in die zelluläre Genaktivierung zu bekommen“, sagt Saliba. „Mittels scSLAM-seq können wir nun erstmals präzise analysieren, wie eine einzelne Zelle innerhalb eines kurzen Zeitfensters auf eine Störung wie etwa eine Virus- oder Bakterieninfektion reagiert, welche Gene in der Folge vermehrt oder vermindert abgelesen werden, und so nachvollziehen, welchen Schlachtplan sie im Kampf gegen den Eindringling vorbereitet hat.“

Jede Zelle tickt anders

Weiterhin konnten die Wissenschaftler zeigen, dass das Ablesen von Genen nicht kontinuierlich abläuft, sondern in Schüben (englisch: bursts): So weckt die Virusinfektion hunderte Gene aus ihrem Dornröschenschlaf und bewirkt ihre Ablesung binnen Stunden nach Eindringen des Virus in die Zelle. Dabei werden vor allem solche Gene aktiviert, die unseren Zellen helfen, die Infektion zu bekämpfen.

„In unseren Analysen zeigten viele zelluläre Gene ein ausgeprägtes Burst-Verhalten. Entweder war in einer Zelle fast die gesamte RNA eines Gens neu oder alt“, sagt Erhard. „Und wir konnten zeigen, dass das Burst-Verhalten von der Struktur bestimmter Regionen der Gensequenz – sogenannten Promotoren – abhängt, die die Ablesung der Gene steuern.“ Diese wird also nicht rauf- oder runterreguliert, sondern erfolgt in jeder Zelle nach einem On/Off-Prinzip.

Saliba: „Das erklärt auch, warum sich Zellen in ihren RNA-Profilen häufig so deutlich unterscheiden und manche Zellen etwa sofort gegen Viren angehen können und andere zu dem Zeitpunkt noch nicht.“ Jede Zelle tickt also nach ihrem eigenen Takt: So weisen Zellen mit zunächst identischen RNA-Profilen bereits nach wenigen Tagen komplett unterschiedliche RNAs in ihrem Zellinnern auf. Dölken: „Mit unseren Untersuchungen konnten wir grundlegend neue Erkenntnisse zur Taktung der zellulären Genaktivierung gewinnen, die mein Verständnis darüber tatsächlich komplett verändert haben.“

Schutz vor Autoimmunerkrankungen

Das On/Off-Prinzip der zellulären Genaktvierung hat für unseren Körper wahrscheinlich eine ganz wichtige Funktion. Denn würden alle Gene, die dem Kampf gegen Viren dienen, dauerhaft von jeder Körperzelle produziert, könnte es zu Fehlreaktionen und Autoimmunerkrankungen kommen. „Durch dieses Anschalten im richtigen Moment, nach dem Motto „Wasser Marsch!“ – aber eben nur wenn es brennt – kann unser Immunsystem eine schützende Umgebung aufbauen, ohne Risiko schädlicher Fehlreaktionen“, sagt Dölken.

So stehen nur in einem kleinen Teil der Körperzellen bestimmte Mechanismen voll funktionsfähig bereit. Diese „Sentinel“-Zellen sind dann in der Lage, zum Beispiel ein eindringendes Virus zu erkennen und effizient zu bekämpfen. Und sie informieren die anderen Zellen, die dann ebenfalls das komplette Abwehrarsenal hochfahren und entsprechende Gene aktivieren, um die Infektion zu kontrollieren und die Gefahr zu bannen.

Mit dem zum Patent angemeldeten bioinformatischen Analyse-Verfahren, das zur Auswertung der hochkomplexen experimentellen Daten nötig ist, konnten die Würzburger Forscher grundlegend neue Einblicke in zelluläre Abläufe gewinnen. „Erstmals können wir wirklich sehen, wie eine einzelne Zelle reagiert“, sagt Dölken. In zukünftigen Untersuchungen kann es zur Beantwortung unterschiedlichster Fragestellungen auf Einzelzellebene genutzt werden. „scSLAM-seq eignet sich hervorragend für Knock-Out-Untersuchungen, um herauszufinden, welche Gene für die Bekämpfung von Krankheitserregern oder bei der Entstehung von Erkrankungen eine Schlüsselrolle spielen“, sagt Saliba. „Es ist methodisch einfach, die Datenqualität ist hoch und ideal für Dosis-Wirkungs-Untersuchungen, auch über die Zeit.“ Das Forschertrio ist sich daher sicher: Es wird spannend!

Das Helmholtz-Zentrum für Infektionsforschung:
Am Helmholtz-Zentrum für Infektionsforschung (HZI) untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern. Das HZI ist Mitglied im Deutschen Zentrum für Infektionsforschung (DZIF). http://www.helmholtz-hzi.de

Das Helmholtz-Institut für RNA-basierte Infektionsforschung:
Das Helmholtz-Institut für RNA-basierte Infektionsforschung (HIRI) wurde im Mai 2017 als gemeinsame Einrichtung des Braunschweiger Helmholtz-Zentrums für Infektionsforschung (HZI) und der Julius-Maximilians-Universität Würzburg (JMU) gegründet. Mit Sitz auf dem Campus des Würzburger Uniklinikums wird sich das HIRI als weltweit erstes Institut seiner Art der Rolle von Ribonukleinsäuren (RNAs) in Infektionsprozessen widmen. Auf Basis dieser Erkenntnisse werden in einem integrativen Forschungsansatz neue Therapieansätze entwickelt und diese durch Entwicklung pharmazeutischer Anwendungsformen klinisch anwendbar gemacht. http://www.helmholtz-hzi.de/hiri

Ihre Ansprechpartner:
Susanne Thiele, Pressesprecherin
susanne.thiele@helmholtz-hzi.de
Dr. Andreas Fischer, Wissenschaftsredakteur
andreas.fischer@helmholtz-hzi.de

Helmholtz-Zentrum für Infektionsforschung GmbH
Presse und Kommunikation
Inhoffenstraße 7
D-38124 Braunschweig

Tel.: 0531 6181-1400; -1405


Originalpublikation:

Florian Erhard, Marisa A.P. Baptista, Tobias Krammer, Thomas Hennig, Marius Lange, Panagiota Arampatzi, Christopher Jürges, Fabian J. Theis, Antoine-Emmanuel Saliba, Lars Dölken: scSLAM-seq reveals core features of transcription dynamics in single cells. Nature 2019, doi: 10.1038/s41586-019-1369-y

Susanne Thiele | Helmholtz-Zentrum für Infektionsforschung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Erfolgreiches T-Zell-Engineering mit Genschere
11.07.2019 | Technische Universität München

nachricht Was die Kraftwerke der Zelle in Form hält
11.07.2019 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Knobeln auf dem Quanten-Schachbrett

Physiker der Universität Innsbruck schlagen ein neues Modell vor, mit dem die Überlegenheit von Quantencomputern gegenüber klassischen Supercomputern bei der Lösung von Optimierungsaufgaben gezeigt werden könnte. Sie demonstrieren in einer aktuellen Arbeit, dass schon wenige Quantenteilchen genügen würden, um das mathematisch schwierige Damenproblem im Schach auch für größere Schachbretter zu lösen.

Das Damenproblem ist eine schachmathematische Aufgabe, die schon den großen Mathematiker Carl Friedrich Gauß beschäftigt hat, für die er aber erstaunlicher...

Im Focus: Ladungstransfer innerhalb von Übergangsmetall-Farbstoffen analysiert

In farbstoffbasierten Solarzellen sorgen Übergangsmetall-Komplexe dafür, dass Licht in elektrische Energie umgewandelt wird. Bisher ging man davon aus, dass innerhalb des Moleküls eine räumliche Ladungstrennung stattfindet. Dass dies eine zu simple Beschreibung des Prozesses ist, zeigt eine Analyse an BESSY II. Erstmals hat dort ein Team die fundamentalen elektronischen Prozesse rund um das Metallatom und seine Liganden untersucht. Die Arbeit ist in der Fachzeitschrift „Angewandte Chemie, International Edition“ erschienen und stellt das Titelbild.

Organische Solarzellen wie die Grätzel-Zelle bestehen aus Farbstoffen, die auf Übergangsmetall-Komplex-Verbindungen basieren. Sonnenlicht regt die äußeren...

Im Focus: Graphen aus Kohlendioxid

Die chemische Verbindung Kohlendioxid kennt die Allgemeinheit als Treibhausgas in der Atmosphäre und wegen seines klimaerwärmenden Effekts. Allerdings kann Kohlendioxid auch ein nützlicher Ausgangsstoff für chemische Reaktionen sein. Über eine solche ungewöhnliche Einsatzmöglichkeit berichtet nun eine Arbeitsgruppe des Karlsruher Instituts für Technologie (KIT) in der Fachzeitschrift ChemSusChem. Sie nutzt Kohlendioxid als Ausgangstoff, um das derzeit sehr intensiv untersuchte Technologiematerial Graphen herzustellen. (DOI: 10.1002/cssc.201901404)

Die Verbrennung fossiler Energieträger wie Kohle und Erdöl liefert Energie für Strom, Wärme und Mobilität, aber führt auch zum Anstieg der Kohlendioxidmenge in...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Superhart und doch metallisch leitfähig: Bayreuther Forscher entwickeln neuartiges Material mit Hightech-Perspektiven

Eine internationale Forschungsgruppe unter der Leitung von Wissenschaftlern der Universität Bayreuth hat ein bislang völlig unbekanntes Material hergestellt: Rhenium-Nitrid-Pernitrid. Infolge einer Kombination von Eigenschaften, die bisher als inkompatibel galten, ist es für technologische Anwendungen hochattraktiv. Es handelt sich um einen superharten metallischen Leiter, der wie ein Diamant extrem hohen Drücken standhält. Ein jetzt in Bayreuth entwickeltes Verfahren eröffnet die Möglichkeit, Rhenium-Nitrid-Pernitrid herzustellen, und ist auf weitere technologisch interessante Materialien anwendbar. In "Nature Communication" werden die neuen Erkenntnisse vorgestellt.

Dass es eine Verbindung geben könnte, die metallisch leitfähig, superhart und ultra-inkompressibel ist, wurde in der Forschung lange Zeit für unwahrscheinlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Schwarze Löcher und unser Navi im Kopf: Wissenschaftsshow im Telekom Dome in Bonn

11.07.2019 | Veranstaltungen

8. Technologieforum Fahrerlose Transportsysteme und mobile Roboter des Fraunhofer IPA

09.07.2019 | Veranstaltungen

Intelligente Nanopartikel für die Medizin des 21. Jahrhunderts

05.07.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schwarze Löcher und unser Navi im Kopf: Wissenschaftsshow im Telekom Dome in Bonn

11.07.2019 | Veranstaltungsnachrichten

Auf dem Weg zu druckbaren organischen Leuchtdioden

10.07.2019 | Energie und Elektrotechnik

Forschende am Fraunhofer WKI entwickeln nachhaltige Sandwichelemente aus Holzschaum und Textilbeton

10.07.2019 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics