Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Hippocampus als Entscheidungsinstanz

20.07.2012
NMDA-Rezeptoren im Hippocampus des Gehirns ermöglichen bei komplexen Orientierungsaufgaben, die richtige Entscheidung zu treffen

Lernen verändert die Synapsen. Für das Erlernen räumlicher Zusammenhänge machten Wissenschaftler bislang eine spezielle Form synaptischer Plastizität im Hippocampus des Gehirns verantwortlich. Diese beruht auf einem Rezeptortyp für den Botenstoff Glutamat: dem NMDA-Rezeptor.


Mäuse ohne funktionierende NMDA-Rezeptoren im Gyrus Dentatus (GD) und in der CA1-Region ihrer Hippocampi (Grin1ΔDGCA1) können so wie normale Kontrolltiere die Position einer verborgenen Insel im Wasserbecken anhand externer Objekte erlernen (Bild Mitte: Wildtyp, schwarz; Grin1ΔDGCA1-Mäuse, rot). Ist die Insel durch einen Ballon markiert und befindet sich an anderer Stelle eine zweiter, identischer Ballon ohne Rettungsinsel, so benutzen die genetisch veränderten Mäuse auch nach zahlreichen Durchläufen immer wieder die Ballons und nicht die Raumpunkte bei der Suche nach der Insel (Bild unten). © Rolf Sprengel/MPI f. medizinische Forschung

Forscher des Max-Planck-Instituts für medizinische Forschung in Heidelberg und der Universität Oxford haben nun beobachtet, dass sich Mäuse sehr gut orientieren können, auch wenn in Teilen ihres Hippocampus die NMDA-Rezeptor-vermittelte Plastizität abgeschaltet war. Müssen diese Mäuse allerdings einen Konflikt während der Orientierung lösen, können sie die Aufgabe nicht erfolgreich bewältigen. Offenbar werden die hippocampalen NMDA-Rezeptoren zur Erkennung oder Lösung des Konflikts benötigt. Die beteiligten Forscher widerlegen somit ein Dogma der Neurowissenschaften zur Funktion hippocampaler NMDA-Rezeptor-vermittelten Plastizität beim räumlichen Lernen.

Der Hippocampus ist Teil des Vorderhirns und verarbeitet eine Vielzahl von Informationen aus verschiedensten Hirnregionen. Die eingehenden Signale werden von Körnerzellen im Gyrus dentatus zu Pyramidenzellen in der CA3-Region und von diesen zu Pyramidenzellen in der CA1-Rgion weitergeleitet. An den am Signalfluss beteiligten Synapsen können NMDA-Rezeptoren die Übertragungseffizienz des Glutamat Botenstoffs optimieren oder abschwächen. Lange Zeit wurde spekuliert, dass diese Form synaptischer Plastizität zum Erlernen räumlicher Strukturen erforderlich ist. Rolf Sprengel und Peter H. Seeburg vom Max-Planck-Institut für medizinische Forschung haben gemeinsam mit Kollegen aus Oxford und Oslo diese Theorie nun widerlegt.

Die Wissenschaftler haben genetisch veränderte Mäuse untersucht, die keine NMDA-Rezeptoren auf Körnerzellen des Gyrus dentatus und Pyramidenzellen der CA1-Region bilden. So konnten sie erstmals beobachten, was passiert, wenn NMDA-Rezeptor-abhängige Plastizität fast ausschließlich an diesen Synapsen im Hippocampus ausgeschaltet ist. Sie analysierten das Lernverhalten der Mäuse und bemerkten, dass die Lernleistung vom Versuchssaufbau abhing. In einem Standard-Schwimmtest war das räumliche Gedächtnis der genetisch veränderten Tiere genauso gut wie das normaler Kontrolltiere. Bei diesem Test müssen die Tiere in einem wassergefüllten Becken die Position einer knapp unter der Wasseroberfläche platzierten Rettungsinsel anhand externer Orientierungspunkte lernen und die verborgene Insel nach einigen Versuchen bewusst ansteuern.

In einem zweiten Orientierungstest, bei dem die Tiere in drei von sechs identischen Laufstegen eines „Trocken-Labyrinths“ Futter finden konnten, suchten Mäuse ohne NMDA-Rezeptoren im Gyrus dentatus und CA1 des Hippocampus immer wieder Laufstege ohne Futter auf, wohingegen Kontrolltiere – ähnlich wie beim Schwimmtest – Markierungen außerhalb des Labyrinths nutzen, um nach einigen Versuchen bevorzugt die drei mit Futter bestückten Laufstege zu finden.

Obwohl beide Tests räumliches Lernen abrufen, waren die genetisch veränderten Tiere somit nur im Laufsteg-Labyrinth schlechter als Kontrolltiere, anscheinend irritiert durch die Tatsache, dass Laufstege mit Futter belohnt oder nicht belohnt sind. David Bannermann aus Oxford konzipierte deshalb einen zweiten Schwimmtest. Die Position der verborgenen Insel war nun mit einem Ballon markiert. Zur Täuschung wurde ein zweiter identischer Ballon an einer anderen Stelle im Wasserbecken angebracht an der sich keine abgesenkte Insel befand. Die Tiere mussten lernen, dass nur die räumliche Orientierung und nicht die Position der Ballons - entsprechend der optisch identischen Laufstege im Labyrinth - entscheidend für das Auffinden der rettenden Insel ist. Da die Ballons von den Tieren bevorzugt zur Hippocampus-unabhängigen Orientierung genutzt werden, fiel es auch den Kontrolltieren schwer, die verborgene Insel nach zahlreichen Durchgängen zielsicher zu finden. Mäuse, bei denen NMDA-Rezeptoren im Gyrus dentatus und in der CA1-Region fehlten, konnten diese Aufgabe nicht lösen. Entfernt man beide Ballons, oder verändert die Form des Täuschungsballons, so steuerten alle Tiere sehr zügig die Position der unsichtbaren Insel an.

„Dies zeigt eindeutig, dass auch unsere genetisch veränderten Mäuse nach einigen Durchläufen die genaue Position der abgesenkten Rettungsinsel kennen oder sich im Schwimmbecken bei der Suche an unterschiedlichen Ballons zielbewusst orientieren können. Unsere Mäuse haben somit in beiden Aufgaben keine Lern- oder Gedächtnisprobleme. Sind jedoch die Aufgaben zeitlich überlagert und muss die Position identischer Ballons im Schwimmbecken als nicht eindeutige Information bewertet werden, so sind unsere Mäuse nicht fähig, die richtige Entscheidung zur Lösung der Aufgabe zu treffen“, sagt Rolf Sprengel. Die NMDA-Rezeptoren in der CA1-Region des Hippocampus treten demzufolge als Entscheidungsinstanz bei Konfliktsituationen in Erscheinung.

Dies ist ein völlig überraschendes Ergebnis. Es ist konträr zu einem seit über 15 Jahren vorherrschenden Lehrbuch-Dogma, wonach NMDA-Rezeptoren in der CA1-Region des Hippocampus zum Aufbau eines räumlichen Gedächtnisses benötigt werden. „Dank der neuen komplexen genetischen Technik von Rolf Sprengel, die NMDA-Rezeptoren gezielt nur in Teilen des Hippocampus in erwachsenen Mäusen auszuschalten und dank intelligent verknüpfter Verhaltensversuche von David Bannerman wissen wir nun, dass wahrscheinlich NMDA-Rezeptoren in anderen Gehirnregionen für das Erlernen räumlicher Zusammenhänge zuständig sind“, erklärt Peter Seeburg. Die Forscher vermuten deshalb, dass hippocampale NMDA-Rezeptoren auch bei anderen nicht räumlichen Konfliktsituationen von Bedeutung sind.

Kontakt

Prof. Dr. Peter H. Seeburg
Max-Planck-Institut für medizinische Forschung
Telefon: +49 6221 486-495
Fax: +49 6221 486-110
Email: seeburg@­mpimf-heidelberg.mpg.de
Dr. Rolf Sprengel
Max-Planck-Institut für medizinische Forschung
Telefon: +49 62 2148-6101
Email: Rolf.Sprengel@­mpimf-heidelberg.mpg.de

Originalveröffentlichung
David M. Bannerman, Thorsten Bus, Amy Taylor, David J. Sanderson, Inna Schwarz, Vidar Jensen, Øivind Hvalby, J. Nicholas P. Rawlins, Peter H. Seeburg & Rolf Sprengel
Dissecting spatial knowledge from spatial choice by hippocampal NMDA receptor deletion

Nature Neuroscience, 15. Juli 2012

Prof. Dr. Peter H. Seeburg | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5903149/nmda-rezeptoren_hippocampus

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht HD-Mikroskopie in Millisekunden
20.09.2019 | Universität Bielefeld

nachricht Alpenflora im Klimawandel: Pflanzen reagieren mit "Verspätung"
20.09.2019 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics