Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

High Noon: Duell im Labor

03.02.2010
Wissenschaftler vom Max-Planck-Institut für biologische Kybernetik in Tübingen und der Universität Birmingham haben sich eine "Schießerei" im Labor geliefert: Sie wollten beweisen, dass wir uns schneller bewegen, wenn wir auf Geschehnisse unserer Umwelt reagieren, als wenn wir die Handlung selber herbeiführen.

Die Idee, die von Westernfilmen inspiriert wurde, könnte uns beispielsweise dabei helfen, im Straßenverkehr zu bestehen oder Strategien für Parkinsonpatienten zu entwickeln, deren Bewegungsfähigkeit eingeschränkt ist. (Proceedings of the Royal Society B., 3. Februar 2010).

Denken wir zurück an Westernfilme aus den frühen Zeiten der Hollywood-Ära: Der Mann, der zuerst die Waffe zog, lag zuerst am Boden. Dieses Szenario hat den Nobelpreisträger Niels Bohr zu der Vermutung veranlasst, dass wir schneller handeln, wenn wir auf einen Schuss reagieren, als wenn wir selbst die Initiative ergreifen und das Duell eröffnen.

Im täglichen Leben bewegen wir uns, weil wir uns dazu entschließen oder weil wir durch unsere Umgebung oder die Entscheidungen anderer dazu veranlasst werden. Bohrs Vermutung unterstützt diese Intuition. "Wir wollten wissen, ob es Beweise dafür gibt, dass Reaktionen schneller sind als die gleichen Bewegungen, die aus Eigeninitiative entstehen", sagte Andrew Welchman, Erstautor der Studie und Wissenschaftler an der Universität Birmingham. Dazu forderte der Wissenschaftler jeweils zwei Versuchsteilnehmer zu einem Wettstreit auf: Sie sollten Tasten auf einer Schaltfläche schneller als ihr Konkurrent drücken. Es gab kein Startsignal, also mussten die Probanden entweder auf eigene Initiative handeln oder schneller reagieren als ihr Gegner - genau wie in den Legenden der Revolverhelden.

Das Ergebnis bestätigte die Erwartungen: Die Teilnehmer, die auf die Handlung eines anderen reagierten, waren im Durchschnitt 21 Millisekunden schneller als jene, die diese initiierten. Allerdings passierten bei den Reaktionen mehr Fehler als bei den Aktionen. Diese "quick-and-dirty" Strategie, also das schnelle, aber nicht ganz akkurate Reagieren auf unsere Umwelt, könnte sehr nützlich sein, vermutet der Wissenschaftler: "21 Millisekunden sind zwar nur ein sehr geringer Zeitunterschied und würde unser Leben in einem echten Duell nicht retten, da unser Gehirn allein schon 200 Millisekunden braucht, um auf die Handlung des Gegenüber zu reagieren. Aber dieser Bruchteil einer Sekunde könnte den Unterschied zwischen Leben und Tod bedeuten, wenn wir beispielsweise einem Bus ausweichen müssen."

Angeblich duellierte sich Niels Bohr mit seinem Kollegen George Gamow mit Spielzeugpistolen, um seine Theorie zu beweisen. Er verhielt sich defensiv und gewann trotzdem jedes Mal. Es hatte den Anschein, als habe er Recht gehabt. Tatsächlich war er wahrscheinlich nur ein sehr guter Schütze.

Existieren zwei unterschiedliche Prozesse in unserem Gehirn für zwei verschiedene Arten von Handlungen? Möglicherweise könnten Parkinsonpatienten diese Frage beantworten. So ist beispielsweise bekannt, dass sie besser reagieren können, als vorsätzliche Bewegungen auszuführen. Einen Ball vom Tisch zu nehmen, fällt ihnen schwerer, als denselben Ball spontan zu fangen. "Dies könnte der Beweis dafür sein, dass die Bereiche im Gehirn, welche durch Parkinson betroffen sind, mehr für bewusste Handlungen als für Reaktionen verantwortlich sind", sagte Heinrich Bülthoff, Direktor am Max-Planck-Institut für biologische Kybernetik in Tübingen. Sollte dies tatsächlich der Fall sein, besteht eventuell die Möglichkeit Strategien zu entwickeln, um die Bewegungsfähigkeit dieser Patienten zu verbessern.

Originalpublikation:
Welchman, A.E., Stanley, J., Schomers, M.R., Miall, R.C., Bülthoff, H.H., The quick and the dead: when reaction beats intention. Proc. R. Soc. B (2010) 00, 1-8 1, doi:10.1098/rspb.2009.2123.
Weitere Informationen:
Die englische Pressemitteilung, Fotos sowie ein Interview mit Andrew Welchman finden Sie unter folgendem Link:

http://www.bbsrc.ac.uk/media/releases/2010/100203-the-quick-and-the-dead-evidence-that-swiftest-response-to-events.aspx

Kontakt:
Dr. Andrew Welchman
Tel.: +44 121 414-2863
E-Mail: a.e.welchman@bham.ac.uk
Dr. Susanne Diederich (Presse- & Öffentlichkeitsarbeit)
Tel.: +49 7071 601-333
E-Mail: presse@tuebingen.mpg.de
Das Max-Planck-Institut für biologische Kybernetik forscht an der Aufklärung von kognitiven Prozessen auf experimentellem, theoretischem und methodischem Gebiet. Es beschäftigt rund 325 Mitarbeiterinnen und Mitarbeiter aus über 40 Ländern und hat seinen Sitz auf dem Max-Planck-Campus in Tübingen. Das MPI für biologische Kybernetik ist eines der 80 Institute und Forschungseinrichtungen der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Dr. Susanne Diederich | idw
Weitere Informationen:
http://www.bbsrc.ac.uk
http://kyb.mpg.de

Weitere Berichte zu: Bewegungsfähigkeit Duell Kybernetik Max-Planck-Institut Prozess

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Tuberkulose: Neue Einblicke in den Erreger
10.10.2019 | Julius-Maximilians-Universität Würzburg

nachricht Nanostrukturen helfen, die Haftung von Krankenhauskeimen zu reduzieren
10.10.2019 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

Aktuelle Trends an den Finanzmärkten im Schnelldurchlauf

09.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IZM setzt das E-Auto auf die Überholspur

11.10.2019 | Energie und Elektrotechnik

IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien

11.10.2019 | Messenachrichten

Kryptografie für das Auto der Zukunft

11.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics