Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Herz in der Petrischale

04.03.2013
Herzgewebe neu herstellen statt Spenderherzen transplantieren: An der TU Wien wurden Substanzen entwickelt, mit denen man funktionsfähige Herzzellen wachsen lassen kann.

Aufgeschürfte Haut wächst rasch wieder nach, geschädigtes Herzgewebe kaum – daher hinterlässt ein Herzinfarkt oft schwere langfristige Schäden. An der TU Wien wurden nun Substanzen entwickelt, die körpereigene Vorläuferzellen in funktionsfähige, schlagende Herzmuskelzellen umwandeln.


Zukunftsvision: Herzgewebe aus dem Labor
TU Wien

Diese Entdeckung könnte die Tür zu einer ganz neuen Art der regenerativen Medizin öffnen. Prof. Mihovilovic von der TU Wien wurde dafür mit dem silbernen Inventum-Preis des Österreichischen Patentamtes ausgezeichnet.

Schlagende Herzmuskelzellen im Labor

Embryonale Stammzellen können sich zu beliebigen Gewebetypen weiterentwickeln. Adulte Stammzellen können sich auch noch in unterschiedliche Zelltypen umwandeln, haben aber schon ein deutlich geringeres Differenzierungspotenzial.
„Welche Mechanismen die Differenzierung von Stammzellen zum Gewebe im Detail beeinflussen ist heute bei Weitem noch nicht verstanden“, sagt Prof. Marko Mihovilovic (Institut für Angewandte Synthesechemie, TU Wien). Seiner Forschungsgruppe gelang es nun allerdings, Substanzen herzustellen, mit denen sich diese Differenzierung ganz gezielt steuern lässt: So kann man Vorläuferzellen zu neuem Herzgewebe werden lassen, das schließlich direkt in der Petrischale zu schlagen beginnt.

„Von verschiedenen Substanzen ist bekannt, dass sie eine Auswirkung auf die Entwicklung von Herzgewebe haben. Wir haben systematisch Verbindungen mit cardiogenem Potential synthetisiert und getestet“, erklärt Thomas Linder, der zusammen mit Kollegin Moumita Koley an der TU Wien über die Differenzierung von Herzgewebe arbeitet. Diese maßgeschneiderten Substanzen werden dann an der Medizinischen Universität Wien an den Vorläuferzellen von Mäusen getestet. „Mit unseren neuen Triazin-Derivatengelang eine dramatische Effizienzsteigerung im Umwandeln von Vorläuferzellen zu Herzzellen im Vergleich zu bereits bekannten Substanzen, die bislang erprobt wurden“, sagt Marko Mihovilovic. Das Team der TU Wien hat die neuen Verbindungen inzwischen patentiert.
Baukastensystem für Moleküle

Der entscheidende Vorteil der Syntheseverfahren, die an der TU Wien entwickelt wurden, ist ihre Flexibilität: „Unsere modularen Synthesestrategien kann man mit LEGO-Bausteinen vergleichen: Aus sehr einfachen Grundbausteinen lässt sich rasch ein hohes Maß an Komplexität schaffen“, sagt Marko Mihovilovic. So können viele verschiedene Abwandlungen der Substanzen hergestellt werden, ohne jedes Mal ein neues Syntheseverfahren entwickeln zu müssen.

Die Tür zu neuer Medizin

Nun geht es darum, aus dem neuen pharmakologischen Werkzeug einen echten Wirkstoff zu entwickeln, der für den Menschen eingesetzt werden kann. „Wichtig ist es, den genauen Wirkmechanismus aufzuklären. Wir wollen auf molekularer Ebene verstehen, wie unsere Substanzen Einfluss auf die Zellentwicklung nehmen“, sagt Mihovilovic. Kennt man diesen Mechanismus, sollte es möglich sein, gezielte Therapieformen zu erarbeiten.

„Wir wollen die Tür zu einer völlig neuen Art der regenerativen Medizin aufstoßen“, hofft Marko Mihovilovic. „Derzeit steht die Transplantationsmedizin im Vordergrund, doch viel besser wäre es, im Labor das passende neue Gewebe herstellen zu können – mit der Original-DNA der Patienten, sodass Abstoßungsreaktionen ausgeschlossen sind.“
Nicht nur die Differenzierung von Vorläuferzellen zu funktionalem Gewebe kann man durch chemische Signale steuern. Es ist sogar möglich den umgekehrten Weg zu gehen und aus ausdifferenzierten Zellen wieder pluripotente Zellen zu generieren, die sich danach zu unterschiedlichen Gewebetypen entwickeln können. „Unsere Zukunftsvision ist: Wir verwenden Zellmaterial, das leicht zu entnehmen ist, etwa aus der Haut, behandeln es mit einem Cocktail verschiedener Chemikalien und lassen dadurch neues Gewebe entstehen“, sagt Mihovilovic. Die Synthesechemie soll helfen, die beschränkte Regenerationsfähigkeit des Herzens zu überwinden. Wenn sich die Therapie auf den Menschen übertragen lässt, würde das die Lebensqualität der PatientInnen drastisch verbessern und auch die Kosten für das Gesundheitssystem verringern.

Auszeichnung durch das Österreichische Patentamt

Das Österreichische Patentamt zeichnete am 4. März die besten Patente des vergangenen Jahres mit dem INVENTUM-Award aus. Die Synthesechemie-Forschungsgruppe an der TU Wien errang dabei den zweiten Platz und kann die silberne Inventum-Trophäe mit nach Hause nehmen. „Wir freuen uns über diese Anerkennung unseres ersten großen Schrittes auf dem Weg zum maßgeschneiderten Herzgewebe. Wir hoffen, dass wir die nächsten Schritte genauso erfolgreich setzen können“, sagt Marko Mihovilovic.

Rückfragehinweise:

Prof. Marko Mihovilovic
Institut für Angewandte Synthesechemie
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T: +43-1-58801-163615
marko.mihovilovic@tuwien.ac.at

Dipl.-Ing. Thomas Linder
Institut für Angewandte Synthesechemie
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T: +43-1-58801-163272
thomas.linder@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://youtu.be/Wb9hMuq-_y0
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2013/herz/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Optische Kontrolle von Herzfrequenz oder Insulinsekretion durch lichtschaltbaren Wirkstoff
17.07.2018 | Heinrich-Heine-Universität Düsseldorf

nachricht Künstliche neuronale Netze helfen, das Gehirn zu kartieren
17.07.2018 | Max-Planck-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Optische Kontrolle von Herzfrequenz oder Insulinsekretion durch lichtschaltbaren Wirkstoff

17.07.2018 | Biowissenschaften Chemie

Umweltressourcen nachhaltig nutzen

17.07.2018 | Ökologie Umwelt- Naturschutz

Textilien 4.0: Smarte Kleidung und Wearables als Innovation

17.07.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics