Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hemmung statt Wachstum: neu entdeckter Mechanismus des Pflanzenhormons Auxin

04.04.2019

An der Innenseite der gekrümmten Sprossachse eines Pflanzenkeimlings hemmt die Anhäufung von Auxin das Zellwachstum – entgegengesetzt der bekannten wachstumsanregenden Wirkung von Auxin in vielen anderen Teilen der Pflanze

Üblicherweise regt eine erhöhte Auxinkonzentration in pflanzlichem Gewebe das Zellwachstum an. Chinesische WissenschafterInnen und ForscherInnen des Institute of Science and Technology Austria (IST Austria) zeigen nun in einer gemeinsam veröffentlichten Studie im Fachjournal Nature auf, dass eine Anhäufung von Auxin in gewissen Gewebeteilen hingegen eine wachstumshemmende Signalkaskade auslöst.


Erhöhte Auxinkonzentration (blaue Bereiche) an der konkaven Seite des apikalen Hakens eines Keimlings von Arabidopsis thaliana.

IST Austria – Marçal Gallemí Rovira/Eva Benkova group

Die neuen Erkenntnisse erklären die Bildung jener typischen Krümmung der Sprossachse, welche der jungen Pflanze nach der Keimung hilft, die Bodendecke zu durchbrechen.

Unterschiedliche Auxinkonzentrationen im pflanzlichen Gewebe steuern die Entwicklung einzelner Pflanzenorgane. Zum Beispiel setzt eine Anhäufung von Auxin im Gewebe des Stammes eine Signalkaskade in Gang, welche zu Zellverlängerung und damit schlussendlich zum Wachstum des Stammes führt.

Ein Wachstumsszenario, das allerdings nicht durch denselben Genexpressionsweg beschrieben werden kann, ist die Bildung des so genannten apikalen Hakens, den der Keimling bildet, um beim Durchbrechen der Bodendecke die empfindlichen Teile des wachsenden Sprosses zu schützen. In den Zellen an der Innenseite der Krümmung – der konkaven Seite – sammelt sich Auxin an.

Um sich jedoch krümmen zu können, muss der Keimling auf der konkaven Seite weniger wachsen als auf der äußeren konvexen. WissenschafterInnen standen damit vor einem Paradoxon: Ist die Wirkung von Auxin in diesem Teil der Pflanze entgegengesetzt zur bereits bekannten Wirkung in anderen Teilen?

Ein Hormon – zwei verschiedene Wege der Genexpression

Gemeinsam mit dem Pflanzenzellbiologen Jiří Friml und Postdoc Zuzana Gelová am IST Austria arbeitete die Forschungsgruppe rund um Professor Tongda Xu von der Chinesischen Akademie der Wissenschaften an der Lösung des Rätsels. Dazu analysierten die ForscherInnen verschiedene Mutanten der Modellpflanze Arabidopsis thaliana – und entdeckten eine bislang unbekannte Signalkaskade der Genexpression, welche durch erhöhte Auxinkonzentration ausgelöst und zur Hemmung des Wachstums an der konkaven Seite des apikalen Hakens führt.

Während sich die zuvor bekannte Signalkaskade im Zellkern abspielt und an das Rezeptorprotein TIR1 (Transport Inhibitor Response 1) gekoppelt ist, nimmt der neu entdeckte Weg seinen Anfang an der Zelloberfläche – und bezieht ein anderes Empfangselement namens Transmembrane Kinase 1 (TMK1) mit ein, dessen Funktion bislang ebenso ungeklärt war.

Studie erklärt Paradoxon und Funktion eines Rezeptormoleküls

Im neu entdeckten Mechanismus aktiviert Auxin an der Zelloberfläche TMK1, wodurch der in die Zelle hineinragende Rezeptorteil vom Rest des Proteins getrennt wird. Im Zellinneren wiederum interagiert dieser abgeschnittene Teil von TMK1 mit spezifischen Transkriptionsrepressoren. Während Auxin im bekannten TIR1-Signalweg ähnliche Repressorproteine abbaut, um die Genexpression zur Anregung des Zellwachstums auszulösen, stabilisiert das Hormon im TMK1-Weg die beteiligten Proteine.

Das Ergebnis dieser Signalkaskade ist die Hemmung des Zellwachstums. Folglich interagieren TIR1 und TMK1 mit unterschiedlichen Untergruppen an Transkriptionsproteinen und Auxin steht am Beginn zweier unterschiedlicher Signalkaskaden mit entgegengesetzter Wirkung: Die Sprossachse wächst auf der einen Seite, während das Wachstum auf der anderen Seite gehemmt wird – die Krümmung entsteht. Ko-Autor Jiří Friml dazu:

„Die Frage, welche Rolle TMK1 in der Zelle spielt, hat uns schon länger beschäftigt, genauso wie die Frage, ob und wenn ja, wie eine erhöhte Auxinkonzentration auf zweierlei Arten wirken kann. Wir haben hartnäckig nach den Antworten gesucht und dank des zentralen Beitrags durch unsere chinesischen KollegInnen kennen wir nun beide.“ Die ForscherInnen interessiert nun, ob der neu entdeckte Auxin-Signalweg auch in anderen pflanzlichen Entwicklungsprozessen eine Rolle spielt.

Über das IST Austria
Das Institute of Science and Technology (IST Austria) in Klosterneuburg ist ein Forschungsinstitut mit eigenem Promotionsrecht. Das 2009 eröffnete Institut widmet sich der Grundlagenforschung in den Naturwissenschaften, Mathematik und Informatik. Das Institut beschäftigt ProfessorInnen nach einem Tenure-Track-Modell und Post-DoktorandInnen sowie PhD-StudentInnen in einer internationalen Graduate School. Neben dem Bekenntnis zum Prinzip der Grundlagenforschung, die rein durch wissenschaftliche Neugier getrieben wird, hält das Institut die Rechte an allen resultierenden Entdeckungen und fördert deren Verwertung. Der erste Präsident ist Thomas Henzinger, ein renommierter Computerwissenschafter und vormals Professor an der University of California in Berkeley, USA, sowie der EPFL in Lausanne. www.ist.ac.at

Wissenschaftliche Ansprechpartner:

Jiří Friml
+43 2243 9000 5401
jiri.friml@ist.ac.at

Originalpublikation:

Min Cao et al: „TMK1-mediated auxin signalling regulates differential growth of the apical hook”, Nature, DOI: http://dx.doi.org/10.1038/s41586-019-1069-7

Weitere Informationen:

https://ist.ac.at/research/research-groups/friml-group/ Webseite der Forschungsgruppe

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Hippo - Ein neuer Akteur für die Gehirngröße
24.04.2019 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Fledermäuse hören in 3D
24.04.2019 | Max-Planck-Institut für Ornithologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuer LED-Leuchtstoff spart Energie

Das menschliche Auge ist für Grün besonders empfindlich, für Blau und Rot hingegen weniger. Chemiker um Hubert Huppertz von der Universität Innsbruck haben nun einen neuen roten Leuchtstoff entwickelt, dessen Licht vom Auge gut wahrgenommen wird. Damit lässt sich die Lichtausbeute von weißen LEDs um rund ein Sechstel steigern, was die Energieeffizienz von Beleuchtungssystemen deutlich verbessern kann.

Leuchtdioden oder LEDs können nur Licht einer bestimmten Farbe erzeugen. Mit unterschiedlichen Verfahren zur Farbmischung lässt sich aber auch weißes Licht...

Im Focus: Münchner Lichtquanten-Destillerie

Garchinger Physiker entwickeln eine Technik, um reine einzelne Photonen zu extrahieren

Das Destillieren von Spirituosen steigert den Gehalt von Alkohol relativ zum Wasseranteil. Ähnlich wirkt eine Methode auf Lichtquanten, Photonen, die ein Team...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantenmaterie fest und supraflüssig zugleich

Forscher um Francesca Ferlaino an der Universität Innsbruck und an der Österreichischen Akademie der Wissenschaften haben in dipolaren Quantengasen aus Erbium- und Dysprosiumatomen suprasolide Zustände beobachtet. Im Dysprosiumgas ist dieser exotische Materiezustand außerordentlich langlebig, was die Tür für eingehendere Untersuchungen weit aufstößt.

Suprasolidität ist ein paradoxer Zustand, in dem die Materie sowohl supraflüssige als auch kristalline Eigenschaften besitzt. Die Teilchen sind wie in einem...

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Künstliche Intelligenz: Lernen von der Natur

17.04.2019 | Veranstaltungen

Mobilität im Umbruch – Conference on Future Automotive Technology, 7.-8. Mai 2019, Fürstenfeldbruck

17.04.2019 | Veranstaltungen

Augmented Reality und Softwareentwicklung: 33. Industrie-Tag InformationsTechnologie (IT)²

17.04.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer LED-Leuchtstoff spart Energie

24.04.2019 | Energie und Elektrotechnik

Control 2019: Fraunhofer IPT stellt High-Speed-Mikroskop mit intuitiver Gestensteuerung vor

24.04.2019 | Messenachrichten

Warum der moderne Mensch aus Afrika kommt

24.04.2019 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics