Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Hemmstoff als perfekter Imitator

22.06.2012
Warum blockiert ein künstlich hergestellter Stoff ein bestimmtes Enzym, das bei Herzschwäche eine große Rolle spielt?
Forscher der Universität Bonn lüfteten nun zusammen mit ihren US-amerikanischen Kollegen dieses Rätsel. In der Kristallstrukturanalyse zeigte sich, dass die synthetische Substanz perfekt den normalen Partner imitiert und ihn durch stärkeres Anhaften vom Bindungsplatz verdrängt. Die Ergebnisse sind nun im Fachjournal „Structure“ veröffentlicht.

Bei einer Herzmuskelschwäche ist die Pumpfunktion des lebenswichtigen Organs stark vermindert. Eine Ursache kann sein, dass sich die Herzzellen nicht mehr ausreichend stimulieren lassen. Wenn es dann zu körperlicher Anstrengung kommt, geht den Betroffenen rasch die Puste aus, weil das Blut nicht mehr effizient im Körper kreist. Enzyme spielen bei der Signalübertragung im Herzen eine große Rolle. Bei einer Herzinsuffizienz ist die Kinase „GRK2“ hochreguliert. Von ihr wird angenommen, dass sie für das Fortschreiten der Erkrankung mit verantwortlich ist. Deshalb suchen Pharmazeuten nach einem Wirkstoff, der genau diese Kinase GRK2 hemmt.

Wirkstoff soll nur das Enyzm GRK2 hemmen

„Das ist allerdings eine schwieriges Unterfangen“, berichtet Prof. Dr. Günter Mayer, Biochemiker am Life and Medical Sciences-Institut (LIMES) der Universität Bonn. „Praktisch alle in Frage kommenden Hemmstoffe blockieren nicht nur spezifisch GRK2, sondern auch andere Kinasen.“ Die Folgen für den Organismus sind dann unüberschaubar. Ausnahme ist ein selektives RNA-Aptamer, das wie ein Schlüssel ins Schloss exakt zur Bindungsstelle des GRK2 passt. Aptamere sind Abwandlungen der Erbgutsubstanz DNA oder RNA, die ähnlich wie ein Antikörper an Enzyme andocken können. Sie lassen sich in vielen Varianten künstlich im Labor erzeugen. Versteht man die Kinase als Schloss, so lässt sich mit biochemischen Methoden ein Aptamer als genau der passende Schlüssel dazu finden. Einen solchen Kinasehemmer hat das Team von Prof. Mayer bereits im Jahr 2008 hergestellt.

Hemmstoff sieht ganz ähnlich aus wie der normale Bindungspartner

„Wie das Aptamer aussieht und wie es funktioniert, war aber nicht klar“, bringt der Biochemiker die zentrale Frage der Grundlagenforscher auf den Punkt. Zusammen mit Prof. Dr. John J. G. Tesmer von der Universität Michigan in Ann Arbor (USA) gingen die Wissenschaftler um Prof. Mayer der Struktur des kinasehemmenden Aptamers mit kristallografischen Methoden auf den Grund. „Nun ist klar, warum das Aptamer so spezifisch die GRK2-Kinase hemmt“, sagt der Bonner Bochemiker. „In der Kristallstrukturanalyse zeigte sich, dass das Aptamer den normalen Bindungspartner Adenosintriphosphat täuschend echt imitiert.“ Darüber hinaus bilden sich weitere spezifische Kontakte, welche die Kinase in einer bestimmten, inaktiven räumlichen Anordnung fixieren. Dadurch haftet der Hemmstoff sehr stark an dem Enzym und verdrängt den natürlichen Bindungspartner.

Ansatz für neue Therapien

Die Wissenschaftler wollen nun den Kinasehemmer als synthetischen Wirkstoff nachbauen. „Wird GRK2 blockiert, kommt es absehbar zu einer besseren Stimulation der Herzmuskelzellen“, sagt Prof. Mayer. Die Wissenschaftler hoffen, dass es dann auch zu einer Besserung der Herzinsuffizienz kommt. Allerdings müssen hierfür noch Varianten des Aptamers entwickelt werden, weil es in der vorliegenden Form nicht die Zellmembran passieren kann. „Allerdings kann die chemische und strukturelle Information, die in der Aptamerstruktur gespeichert ist, in eine niedermolekulare Struktur umgewandelt und dieses Molekül dann in Tierversuchen erprobt werden“, berichtet Prof. Mayer.

Publikation: Molecular Mechanism for Inhibition of G Protein-Coupled Receptor Kinase 2 by a Selective RNA Aptamer, Fachjournal „Structure“, DOI: 10.1016/j.str.2012.05.002

Kontakt:

Prof. Dr. Günter Mayer
LIMES-Institut der Universität Bonn
Tel. 0228/734808
E-Mail: gmayer@uni-bonn.de

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Synthese gegen die Stoppuhr: Neuartiges Radiopharmakon zur Diagnostik tumorrelevanter Transportproteine entwickelt
06.04.2020 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Winzige Meeresbewohner als Schlüssel für globale Kreisläufe
06.04.2020 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungsnachrichten

Wenn Ionen an ihrem Käfig rütteln

06.04.2020 | Energie und Elektrotechnik

Virtueller Roboterschwarm auf dem Mars

06.04.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics