Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Haariges“ Fortbewegungsmittel in 3D

19.05.2011
Sie bewegen Zellen, verarbeiten Signale von Außen oder sorgen für die korrekte Anordnung der inneren Organe. Diese Aufgaben können die feinen Härchen an der Zelloberfläche jedoch nur erfüllen, wenn ihr Transportsystem sie mit allen lebenswichtigen Stoffen versorgt.

Wissenschaftlern am Max-Planck-Institut für Biochemie (MPIB) in Martinsried bei München ist es jetzt erstmals gelungen, die dreidimensionale Struktur dieses komplexen Transportsystems zu entschlüsseln. So konnten sie wichtige Einblicke in seinen Aufbau und seine Funktionsmechanismen gewinnen. Die Ergebnisse helfen möglicherweise dabei, krankheitsverursachende Störungen zu verhindern. (EMBO Journal, 19. 05. 2011)


Molekulare Struktur der zwei Proteine IFT25 und IFT27, die einen makromolekularen Komplex bilden.
Foto: Esben Lorentzen / Copyright: MPI für Biochemie

An der Oberfläche von eukaryotischen Zellen befinden sich winzige, fünf bis zehn Mikrometer (das sind 0,0005 bis 0,001 cm) lange Flimmerhärchen: die Zilien. So unscheinbar diese Härchen auf den ersten Blick auch sind, so wichtig sind die Aufgaben die sie im Körper erfüllen. Durch die Verteilung bestimmter Botenstoffe während der Entwicklung des Embryos sorgen Zilien für die korrekte Anordnung der inneren Organe. Ist das nicht gewährleistet, kann ein Situs inversus die Folge sein und alle Organe liegen spiegelverkehrt im Körper.

Außerdem verleihen bewegliche Zilien den Spermien ihre Mobilität und bewegen Eizellen entlang des Eileiters. Funktionsstörungen können bei Männern zu Unfruchtbarkeit, bei Frauen zu einer gefährlichen Eileiterschwangerschaft führen. Die unbeweglichen Flimmerhärchen leiten als Sensoren Signale aus der Umwelt weiter und ermöglichen so verschiedene Sinneswahrnehmungen. Sie sitzen beispielsweise in den Photorezeptorzellen des Auges. Defekte dieser Zilienform können eine Verkümmerung der Netzhaut und sogar Erblindung zur Folge haben.

Obwohl Zilien vielfältige Aufgaben erfüllen, weisen sie alle eine sehr ähnliche Struktur auf: Entlang eines Bündels aus Fasern in ihrem Inneren werden Moleküle transportiert, die für Aufbau und Erhalt funktionsfähiger Zilien unverzichtbar sind. Störungen in diesem Transportsystem, das Wissenschaftler Intraflagellären Transport (IFT) nennen, können zu Fehlern beim Aufbau der Zilien und damit zu Krankheiten mit sowohl geistigen als auch körperlichen Störungen führen.

Auch wenn die Wissenschaft schon lange weiß, welche Bedeutung der IFT für die Zilien und damit für einen funktionierenden Organismus hat, konnten seine Strukturen und Mechanismen bisher nicht aufgeklärt werden. Bekannt war lediglich, dass der IFT-Komplex aus mindestens 20 verschiedenen Proteinen (Eiweißen) besteht, die sich auf zwei große Untereinheiten verteilen. Wissenschaftlern um Esben Lorentzen, Leiter der Forschungsgruppe „Strukturbiologie der Zilien“ am MPIB, ist es jetzt gelungen, die Struktur einer Untereinheit des IFT-Komplexes auf molekularer Ebene darzustellen: Mit Hilfe von Röntgenkristallographie konnten sie diesen IFT-Komplex 25/27 in 3D abbilden und so seine Strukturen und Funktionsmechanismen analysieren.

„Der IFT-Komplex 25/27 spielt eine essentielle Rolle bei der Regulierung des IFT-Prozesses. Deshalb stellen unsere Ergebnisse einen ersten Schritt dar, um die Struktur des gesamten IFT-Komplexes und die ihm zugrunde liegenden Mechanismen zu entschlüsseln und zu verstehen“, bewertet Sagar Bhogaraju, Doktorand am MPIB, die Resultate. Ein besseres Verständnis dieses Transportsystems der Zilien könnte wiederum helfen, Ursachen für Störungen aufzudecken und Fehlern vorzubeugen, so die Forscher. Auf diese Weise könnten Krankheiten, die als Folge defekter Zilien auftreten, eines Tages möglicherweise verhindert werden. [UD]

Originalveröffentlichung:
Bhogaraju, S., Taschner, M., Morawetz, M., Basquin, C. and Lorentzen, E. (2011), Crystal Structure of the Intraflagellar Transport Complex 25/27, EMBO Journal, 18. Mai 2011.
Kontakt:
Dr. Esben Lorentzen
Strukturbiologie der Zilien
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: lorentze@biochem.mpg.de
Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de

Anja Konschak | Max-Planck-Institut
Weitere Informationen:
http://www.biochem.mpg.de
http://www.biochem.mpg.de/en/rg/lorentzen/ -

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics