Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Guten ins Töpfchen – Schnelles Wirkstoff-Screening dank mikroskaliger Thermophorese

16.05.2011
Die Membran einer Zelle ist durchzogen von Rezeptor-Proteinen. Deren Aufgabe ist es, Informationen oder Moleküle in das Innere der Zelle zu transportieren.

Dazu gehören auch Medikamente, sodass sich Wissenschaftler schon länger für das Wechselspiel von Rezeptoren und Molekülen interessieren. Bekannt ist, dass die Bindung solcher Wirkstoffe eine Signalkette auslösen kann, die am Ende den Stoffwechsel der kranken Zellen beeinflusst.

Die Wirkstoffe sind im Vergleich zu den Rezeptoren sehr klein und ihre Bindung war daher bisher kaum nachweisbar. Ein neues an der Ludwig-Maximilians-Universität (LMU) München mitentwickeltes Verfahren ermöglicht den Wissenschaftlern jetzt, die Bindung potenzieller Wirkstoffe schnell, genau und direkt in Lösung zu testen. Die Entwicklung wurde möglich durch die enge Zusammenarbeit von LMU-Biophysikern des Exzellenzclusters „Nanosystems Initiative Munich“ (NIM), dem LMU-Spin-Off NanoTemper sowie Forschern des Massachusetts Institute of Technology (MIT) in Boston. (PNAS, 9. Mai 2011).

Membranrezeptoren koordinieren die Zell-Kommunikation – zwischen Einzellern genauso wie zwischen den Zellen eines komplexen Organismus wie dem menschlichen Körper. Es handelt sich bei diesen Rezeptoren um sehr große Proteine, die die Zellmembran von der Oberfläche bis ins Zellinnere durchziehen. Sobald ein Botenstoff oder ein anderes Molekül erfolgreich bindet, ändert sich die räumliche Anordnung des Proteins. Und diese Konformationsänderung löst im Inneren der Zelle eine Signalkaskade aus, die im Fall von Medikamenten regulierend in den Stoffwechsel eingreift.

Erste Voraussetzung für den Heilungserfolg ist jedoch, dass der potenzielle Wirkstoff überhaupt an das Rezeptor-Protein binden kann. Bei der Suche nach neuen Medikamenten sind die sogenannten G-Protein gekoppelten Rezeptoren (GPCR) besonders gefragt. Denn Wissenschaftler konnten bereits für eine Reihe von Botenstoffen nachweisen, dass sie an diese Rezeptoren binden.

Dabei treffen die Forscher jedoch immer wieder auf zwei Probleme: Zum einen sind Rezeptor-Proteine sehr empfindlich und normalerweise nur in der Membran eingebettet funktionsfähig. Zum anderen sind die Wirkstoff-Moleküle in der Regel deutlich kleiner als die Rezeptoren. Daher ist es fast unmöglich, die Bindung mit herkömmlichen Messmethoden wie über Massen- oder Größenänderung nachzuweisen. Alternative Methoden, wie der indirekte Nachweis anhand von Zellkulturversuchen, benötigen deutlich mehr Zeit und Material.

Die Wissenschaftler aus Boston und München kombinierten zwei neuartige Techniken, um diese Grenzen zu überwinden. Die Gruppe vom MIT schaffte es, die G-Protein-gekoppelten Rezeptoren mit einer Membran-artigen Hülle aus Peptiden zu umgeben. Auf diese Weise können die Forscher künstliche Rezeptoren produzierten, die auch ohne Zellmembran korrekt gefaltet und löslich sind.

Die Biophysiker der LMU arbeiten mit einem mikroskaligen Temperaturgradienten, um die Bindung von Wirkstoffen an diese Rezeptoren nachzuweisen. Ihre Methode basiert auf der Tatsache, dass sich alle Moleküle in Lösung entlang eines Temperaturgradienten auf eine eigene, charakteristische Art und Weise bewegen. Mithilfe eines Lasers heizen die Münchner Wissenschaftler daher ein Röhrchen mit einem Mikroliter Testflüssigkeit so auf, dass sich ein Gradient von 0,12 °C / Mikrometer aufbaut. Anschließend vergleichen sie die Fortbewegung des Rezeptors alleine mit dem Verhalten des Moleküls nach Zugabe einer Testsubstanz. Wenn der Wirkstoff an das Rezeptormolekül bindet, ändert sich dessen Bewegung.

Der Messaufbau dieser sogenannten Mikroskaligen Thermophorese ist sehr stabil. Und zugleich ist die Methode so sensitiv, dass sie selbst kleinste bindungsinduzierte Konformationsänderungen der GPC-Rezeptoren detektiert und mit einer sehr kleinen Probemenge auskommt. Wird diese Menge variiert, kann die Wirksamkeit der Bindung auch quantitativ bestimmt werden.

Die Untersuchung der löslichen GPC-Rezeptoren mit der mikroskaligen Thermophorese der Münchner Wissenschaftler hat damit durchaus das Potenzial, zu einem einfachen und schnellen Standard-Test für die Pharma- und Grundlagenforschung zu werden. (NIM)

Publikation:
„Peptide surfactants for cell-free production of functional G protein-coupled receptors”;
Xiaoqiang Wang, Karolina Corin, Philipp Baaske, Christoph J. Wienken, Moran Jerabek-Willemsen, Stefan Duhr, Dieter Braun, Shuguang Zhang;

Proceedings of the National Academy of Sciences of America (PNAS), Published online May 9, 2011

Ansprechpartner:
Prof. Dr. Dieter Braun
Systems Biophysics
Tel.: 089 / 2180 - 2317
E-Mail: dieter.braun@lmu.de
Dr. Philipp Baaske
NanoTemper Technologies GmbH
Amalienstraße 54
80799 München
Tel: 089-2180 2833
E-Mail: philipp.baaske@nanotemper.de

Luise Dirscherl | Ludwig-Maximilians-Universität M
Weitere Informationen:
http://www.lmu.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics