Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Großangriff auf den Lebenszyklus von Malariaparasiten

08.02.2010
Durchbruch bei Erforschung von Malariaparasiten in "Nature Biotechnology"

Forschern des Bernhard-Nocht-Instituts für Tropenmedizin (BNI) und der Nanyang Technological University (NTU), Singapur, ist es erstmals gelungen, umfassend die Funktion von Proteinen (Eiweißmolekülen) des Malariaparasiten Plasmodium falciparum vorherzusagen.(1)

Dafür haben sie Methoden der Informatik und der Zellbiologie miteinander kombiniert. Von ihrer Datenbank, die im Januar dieses Jahres veröffentlicht wurde, profitieren Wissenschaftler in aller Welt im Kampf gegen Malaria.

Noch immer sterben weltweit über eine Millionen Menschen jährlich an Malaria - alle 30 Sekunden stirbt ein afrikanisches Kind an den Folgen der Erkrankung. "Zunehmende Medikamentenresistenz des Malariaparasiten macht die Entwicklung neuer Strategien zur Vorbeugung und Behandlung der Infektion dringend notwendig", betont Dr. Tim Gilberger vom BNI. Da der Malariaerreger einen einzigartigen Lebenszyklus durchläuft, können Forscher auf molekularer Ebene nach Besonderheiten in der Entwicklung des Parasiten suchen. Diese Erkenntnisse nutzen sie dann aus, um Substanzen zu suchen, die dem Parasiten, nicht aber dem Menschen schaden.

Ein nützliches Hilfsmittel hierzu hat das Forscherteam um Dr. Gilberger (BNI) und Prof. Dr. Zbynek Bozdech (NTU) entwickelt: In einem Gemeinschaftsprojekt erstellten sie die weltweit erste Datenbank, die die Funktion von mehr als 2.500 hypothetischen Proteinen des Malariaerregers vorhersagt. Ausgangspunkt des Projekts war die große Herausforderung, dass die Funktion von über 50 Prozent der 5.300 Gene des Parasiten noch unbekannt war.

Die Datenbank wurde in der Januar-Ausgabe 2010 der hochrangigen Fachzeitschrift "Nature Biotechnology" veröffentlicht - nach rund fünf Jahren Forschungsarbeit.(1) Ein Aufwand, der sich gelohnt habe, so Gilberger. Denn "nur das vollständige Verstehen und Charakterisieren aller Gene bedeutet einen entscheidenden Schritt in der Entwicklung neuer Strategien zu Prävention und Therapie der Malaria", erklärt der Parasitologe.

Was zuvor keiner wagte: Bioinformatik kombiniert mit modernsten Hochdurchsatz-Methoden

Bisher hatte sich kaum ein Wissenschaftler an einer Analyse aller Gene des Malaria-Erregers versucht. Die biologische Besonderheit des Parasiten erschwert die Anwendung von Forschungstechniken, die Wissenschaftler bei anderen Organismen mit Erfolg einsetzten. Dennoch wagten Gilberger und Bozdech den Schritt und sammelten Daten mittels moderner "Microarray-Technik". Dabei verglichen sie den Einfluss einer Vielzahl von Medikamenten und Substanzen auf die Genregulation des Erregers. Der Erfolg: Die Forschergemeinschaft konnte ihre eigenen Ergebnisse mit entwicklungsbiologischen Informationen von verschiedenen Malariaerregern, Analysen wiederkehrender Motive in DNA-Sequenzen und Hochdurchsatz-Untersuchungen zur Wechselwirkung zwischen einzelnen Proteinen kombinieren. "Nur durch die Kombination vier verschiedener Forschungsmethoden gelang es, das erste verlässliche Proteinnetzwerk von P. falciparum zu erstellen", so Gilberger. Die Datenbank stünde nun Wissenschaftlern aus aller Welt zur Verfügung.

BNI startet neuen Forschungsansatz gegen Parasiten-Invasion

Gilberger selbst ist am meisten am Proteinnetzwerk "Invasion" interessiert: die Gesamtheit aller Proteine, die - der Vorhersage zufolge - am Eindringen der Malariaerreger in Blutzellen beteiligt sind. Die Hamburger Wissenschaftler haben damit begonnen, 70 potentielle Invasions-Proteine herauszusuchen, um ihre Rolle beim Eindringen in Blutzellen zu bestätigen und genauer zu untersuchen.

Erste Ergebnisse seien viel versprechend, bemerkt Gilberger. Seine Gruppe konnte bereits 42 Proteine mit einem fluoreszierenden Farbstoff markieren und dadurch die Lokalisierung der Eiweißmoleküle im Parasiten bestimmen. "Möglicherweise können wir in Zukunft mit einem geeigneten Medikament die Ausbreitung des Erregers in die Blutzellen verhindern", hofft der Parasitologe des BNI. Bis dahin werde jedoch noch 'viel Wasser die Elbe hinunter fließen'. Denn "nur die funktionelle Untersuchung der mehr als 300 Invasions-Proteine wird es uns ermöglichen, die Schwachstellen in diesem Vorgang zu erkennen", erklärt Gilberger. Dann könne das gewonnene Wissen zur Entwicklung neuer Präventions- und Therapieansätze gegen Malaria genutzt werden.

Publikation: (1) Hu, et al.: Transciptional profiling of growth perturbations of the human malaria parasite Plasmodium falciparum. Nat Biotechnol. 2010 Jan;28(1):91-8.

Über das Bernhard-Nocht-Institut für Tropenmedizin

Das Bernhard-Nocht-Institut für Tropenmedizin ist Deutschlands größte Einrichtung für Forschung, Versorgung und Lehre auf dem Gebiet tropentypischer Erkrankungen und neu auftretender Infektionskrankheiten. Gegenstand der Forschung sind Klinik, Epidemiologie und Krankheitsbekämpfung sowie die Biologie der Krankheitserreger, ihrer Reservoirtiere und Überträger. Den aktuellen Schwerpunkt bilden Malaria, hämorrhagische Fieberviren, Tuberkulose und Gewebewürmer. Für den Umgang mit hochpathogenen Erregern wie Lassa- und Ebola-Viren verfügt das Institut über Laboratorien der höchsten biologischen Sicherheitsstufe (BSL4). Als herausragende wissenschaftliche Leistungen des Instituts in jüngster Vergangenheit gelten die Identifizierung des SARS-Coronavirus und die Entdeckung eines bisher unbekannten Entwicklungsstadiums der Malaria- Erreger im Menschen.

Versorgungsleistungen des Instituts umfassen die spezielle Labordiagnostik tropentypischer und anderer seltener Erkrankungen, eine enge Zusammenarbeit mit der Bundeswehr sowie Beratung für Wissenschaft, Wirtschaft, Politik und Öffentlichkeit, die wesentlich zur gesamtstaatlichen Bedeutung des Instituts beitragen. Das Institut dient darüber hinaus als nationales Referenzzentrum für den Nachweis aller tropischen Infektionserreger, Referenzlabor für SARS und Kooperationszentrum der Weltgesundheitsorganisation für hämorrhagische Fieberviren.

Die Lehrtätigkeit umfasst einen dreimonatigen, ganztägigen Kursus über alle Aspekte der Tropenmedizin für Ärzte sowie ein Fortbildungsprogramm für Doktoranden des Instituts und eine Reihe von Weiterbildungsangeboten zu Themen der Reisemedizin und der internationalen Gesundheit. In Zusammenarbeit mit dem ghanaischen Gesundheitsministerium und der Universität von Kumasi betreibt das Institut seit über zehn Jahren ein modernes Forschungs- und Ausbildungszentrum in Ghana, das auch externen Arbeitsgruppen zur Verfügung steht.

Als Mitglied der Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz (WGL) wird das Institut als Forschungsinstitut mit überregionaler Bedeutung gemeinsam durch den Bund, die Freie und Hansestadt Hamburg und die übrigen Bundesländer finanziert.

Pressekontakt BNI:
Dr. Tim Gilberger
AG Malaria II
Bernhard-Nocht-Str. 74
20359 Hamburg
Tel.: +49 40 42818-486
E-Mail: gilberger@bnitm.de
Dr. Eleonora Setiadi
Wissenschaftsreferentin / PR
Bernhard-Nocht-Str. 74
20359 Hamburg
Tel.: +49 40 42818-264
E-Mail: setiadi@bnitm.de

Dr. Eleonara Setiadi | idw
Weitere Informationen:
http://www.bnitm.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Biochemie-Absolvent der Universität Bayreuth hat Antigen für hochspezifischen Corona-Antikörpertest entwickelt
22.05.2020 | Universität Bayreuth

nachricht Wenn aus theoretischer Chemie Praxis wird
22.05.2020 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wenn aus theoretischer Chemie Praxis wird

Thomas Heine, Professor für Theoretische Chemie an der TU Dresden, hat 2019 zusammen mit seinem Team topologische 2D-Polymere vorhergesagt. Nur ein Jahr später konnten diese Materialien von einem italienischen Forscherteam synthetisiert und deren topologische Eigenschaften experimentell nachgewiesen werden. Für die renommierte Fachzeitschrift Nature Materials war das Anlass, Thomas Heine zu einem News and Views Artikel einzuladen, der in dieser Woche veröffentlicht wurde. Unter dem Titel "Making 2D Topological Polymers a reality" beschreibt Prof. Heine, wie aus seiner Theorie Praxis wurde.

Ultradünne Materialien sind als Bausteine für nanoelektronische Bauelemente der nächsten Generation äußerst interessant, da es viel einfacher ist, Schaltungen...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Mikroroboter rollt tief ins Innere des Körpers

Mit einem Leukozyten als Vorbild haben Wissenschaftler des Max-Planck-Instituts für Intelligente Systeme in Stuttgart einen Mikroroboter entwickelt, der in Größe, Form und Bewegungsfähigkeit einem weißen Blutkörperchen gleicht. In einem Labor simulierten sie dann ein Blutgefäß – und es gelang ihnen, den Mikroroller durch diese dynamische und dichte Umgebung zu steuern. Der Roboter hielt dem simulierten Blutfluss stand und brachte damit das Forschungsgebiet rund um die zielgenaue Medikamentenabgabe einen Schritt weiter: Es gibt keinen besseren Zugangsweg zu allen Geweben und Organen im menschlichen Körper als den Blutkreislauf.

Wissenschaftler des Max-Planck-Instituts für Intelligente Systeme (MPI-IS) in Stuttgart haben einen winzigen Mikroroboter entwickelt, der einem weißen...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: Schnüffel-Roboter als Katastrophenhelfer

Wo Menschenleben gefährdet sind, kommen künftig neuartige Roboter zum Einsatz, die an der TU Dresden entwickelt werden

Wissenschaftler an der TU Dresden arbeiten seit Juni 2019 an künstlichen Helfern, die in einem Katastrophengebiet Gefahren erkennen, beseitigen und somit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

Erfolgreiche Premiere für das »Electrochemical Cell Concepts Colloquium«

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Techniker Krankenkasse, EuPD Research und Handelsblatt starten Bewerbung für die Sonderpreise "Gesunde Hochschule" im Rahmen des Corporate Health Award 2020

22.05.2020 | Förderungen Preise

Werkstattbericht #1: Head Mounted Displays (HMDs) – Schwerpunktpositionen und Drehmomente

22.05.2020 | Informationstechnologie

Biochemie-Absolvent der Universität Bayreuth hat Antigen für hochspezifischen Corona-Antikörpertest entwickelt

22.05.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics