Größe ist nicht alles – Tiere passen sich mit unterschiedlichen Methoden an den Klimawandel an

Gut an kalte Temperaturen angepasst: Die kleine Lapplandmeise (Poecile cinctus) © Open Source Wikipedia

Die kleine Lapplandmeise (Poecile cinctus) fühlt sich in den kalten Regionen Skandinaviens und Sibiriens wohl, der Afrikanische Elefant bevölkert die heißen Steppen Westafrikas. „Das dürfte es laut dem Scholander-Irving-Modell überhaupt nicht geben“, erklärt Dr. Christian Hof vom Senckenberg Biodiversität und Klima Forschungszentrum in Frankfurt und fährt fort: „Das war für uns Anlass diese gut 60 Jahre alte Theorie genauer unter die Lupe zu nehmen.“

Ausgehend von der Fragestellung, wie Säugetiere und Vögel ihre Körpertemperatur nahezu konstant halten können, wenn sich die Außentemperatur – zum Teil drastisch – ändert, entwickelten in den 1950er Jahren die Biologen Laurence Irving und Per Scholander ein Modell der Wärmeregulierung bei arktischen Säugetieren. Ihre Theorie besagt, dass warmblütige Säugetiere und Vögel den Verlust von Wärme an die Umwelt durch wärmeerzeugende Stoffwechselprozesse ausgleichen.

Sowohl die Rate der Stoffwechselprozesse als auch die Abgabe der Wärme nach außen werden maßgeblich von der Körpergröße beeinflusst. „Dies hätte laut dem seit 60 Jahren geltenden Modell zur Folge, dass große Tiere in kalten Regionen leben und kleine Tiere auf heiße Erdteile beschränkt sind – in der Realität sieht das aber anders aus“, erläutert Hof und fährt fort: „Kleine Säugetiere treten beispielsweise in den verschiedensten Lebensräumen mit Temperaturen von -35 Grad bis zu 45 Grad Celsius auf“.

Die Körpergröße allein erklärt die Anpassung an die unterschiedlichen Temperaturen demnach nicht. Der Frankfurter Biologe hierzu: „Als weiteren Faktor für die Anpassung konnten wir die thermische Leitfähigkeit identifizieren.“ Die Wärmeleitfähigkeit eines Tieres kann beispielsweise durch große Ohren, lange Beine oder einem dichten Pelz beeinflusst werden.

Ein internationales Wissenschaftlerteam unter der Leitung von Trevor Fristoe von der University of New Mexico hat hierfür 211 Vogel- und 178 Säugetierarten bezüglich ihrer Körpertemperatur und der Temperatur ihres Lebensraums untersucht. Sie kommen zu dem Schluss, dass sich die Tiere sowohl durch die Anpassung ihres Stoffwechsels als auch der thermischen Leitfähigkeit auf die unterschiedlich temperierten Lebensräume einstellen konnten.

„Die Lapplandmeise konnte sich beispielsweise durch eine Steigerung ihrer körpereigenen Wärmeproduktion oder durch eine Reduktion ihrer thermischen Leitfähigkeit, beispielsweise durch ein warmes Gefieder, oder auch durch eine Kombination beider Faktoren an ihren eisigen Lebensraum anpassen“, erklärt Hof.

Um die Auswirkungen des Klimawandels nachzuvollziehen ist es wichtig zu wissen, welche Möglichkeiten Tiere haben sich an verschiedene Temperaturen anpassen. „Erst aufgrund der heute vorhandenen großen Datenmenge konnten wir zeigen, dass Lapplandmeise und Afrikanischer Elefant keine Ausnahmen sind und das Scholander-Irving-Modell widerlegen“, fügt Hof hinzu.

Kontakt
Dr. Christian Hof
Senckenberg Biodiversität und Klima Forschungszentrum
Tel. 069 7542 1804
christian.hof@senckenberg.de

Judith Jördens
Pressestelle
Senckenberg Gesellschaft für Naturforschung
Tel. 069 7542 1434
pressestelle@senckenberg.de

Publikation
Trevor S. Fristoe, Joseph R. Burger, Meghan A. Balk, Imran Khaliq, Christian Hof, and James H. Brown: Metabolic heat production and thermal conductance are mass-independent adaptations to thermal environment in birds and mammals, PNAS 2015 112 (52) 15934-15939; doi:10.1073/pnas.1521662112

Die Natur mit ihrer unendlichen Vielfalt an Lebensformen zu erforschen und zu verstehen, um sie als Lebensgrundlage für zukünftige Generationen erhalten und nachhaltig nutzen zu können – dafür arbeitet die Senckenberg Gesellschaft für Naturforschung seit nunmehr fast 200 Jahren. Diese integrative „Geobiodiversitätsforschung“ sowie die Vermittlung von Forschung und Wissenschaft sind die Aufgaben Senckenbergs. Drei Naturmuseen in Frankfurt, Görlitz und Dresden zeigen die Vielfalt des Lebens und die Entwicklung der Erde über Jahrmillionen. Die Senckenberg Gesellschaft für Naturforschung ist ein Mitglied der Leibniz-Gemeinschaft. Das Senckenberg Naturmuseum in Frankfurt am Main wird von der Stadt Frankfurt am Main sowie vielen weiteren Partnern gefördert.

Mehr Informationen unter www.senckenberg.de

2016 ist Leibniz-Jahr. Anlässlich des 370. Geburtstags und des 300. Todestags des Universalgelehrten Gottfried Wilhelm Leibniz (*1.7.1646 in Leipzig, † 14.11.1716 in Hannover) veranstaltet die Leibniz-Gemeinschaft ein großes Themenjahr. Unter dem Titel „die beste der möglichen Welten“ – einem Leibniz-Zitat – rückt sie die Vielfalt und die Aktualität der Themen in den Blick, denen sich die Wissenschaftlerinnen und Wissenschaftler der bundesweit 88 Leibniz-Einrichtungen widmen. www.bestewelten.de

Media Contact

Judith Jördens Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer