Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gießener Forscher beobachten unerwartete Probleme bei Membranen für Hybrid-Batterien

15.03.2016

Bildung einer Zwischenschicht zwischen flüssigen und festen Elektrolyten behindert Ionentransfer – Publikation in „Nature Chemistry“

Als Folge der Energiewende forschen Wissenschaftlerinnen und Wissenschaftler weltweit an leistungsfähigeren Batterien – etwa für den Antrieb von Autos oder für die Zwischenspeicherung von alternativen Energien. Im Fokus stehen dabei unter anderem neuartige hybride Batteriekonzepte, bei denen flüssige Elektrolyte mit Festkörper-Membranen kombiniert werden.


Schematische Darstellung der Passivierungsschicht „solid-/liquid electrolyte interphase“ (kurz „SLEI“).

Grafik: Busche et al. / Nature Chemistry

Ein Forscherteam um Prof. Dr. Jürgen Janek vom Physikalisch-Chemischen Institut der Justus-Liebig-Universität Gießen (JLU) in Zusammenarbeit mit den Firmen BASF SE und Schott AG berichtet nun in der Fachzeitschrift „Nature Chemistry“ von überraschenden Beobachtungen, die erheblichen Einfluss auf die Leistungsfähigkeit einer hybriden Batterie hätten. Demnach bildet sich sich an den Grenzflächen von Festelektrolyt-Membranen und flüssigen Elektrolyten eine sogenannte Passivierungsschicht, die den Ionentransfer behindert.

Das grundlegende Bauprinzip von Batterien ist unabhängig von der speziellen „Zellchemie“ immer gleich: Jede Batterie besteht aus zwei Elektroden, die durch einen rein ionenleitenden Elektrolyten getrennt sind. In den heute marktführenden und bereits jetzt sehr leistungsfähigen Lithium-Ionen-Batterien ist der Elektrolyt meist flüssig und besteht aus organischen Lösungsmitteln und einem lithiumhaltigen Leitsalz. Dieser flüssige Elektrolyt ermöglicht zwar die Funktion der Batterie, er stellt aber oft auch ihre „Achillesferse“ dar.

Beim Laden und Entladen einer Batterie können sich Bestandteile der Elektroden im Elektrolyten lösen und zur ungewollten chemischen Wechselwirkung von Anode und Kathode führen. Dies spielt besonders bei der praktischen Umsetzung gänzlich neuer Batteriekonzepte, wie zum Beispiel der Lithium-Schwefel- oder Lithium-Sauerstoff-Batterie ein bisher nur unzureichend gelöstes Problem dar. Aber auch in Lithium-Ionen-Batterien nächster Generationen können derartige chemische „Kurzschlüsse“ zu Stabilitätsproblemen führen.

Daher werden heute hybride Batteriekonzepte, in denen rein ionenleitende Festkörpermembranen als Diffusionssperre mit Flüssigelektrolyten kombiniert werden, als möglicher Lösungsweg erforscht. Wie die Autoren, zu denen auch Martin Busche, Thomas Drossel, Dr. Thomas Leichtweiß, Dr. Dominik Weber und Prof. Dr. Philipp Adelhelm gehören, beobachteten, bilden die untersuchten Festelektrolyte im Kontakt mit dem flüssigen Elektrolyt eine Art Passivierungsschicht aus.

Durch die Kombination aufwändiger physikalisch-chemischer Analysemethoden konnten sowohl der elektrische Widerstand dieser Schicht ermittelt als auch ihre chemischen Bestandteile identifiziert werden.

Diese zeigen Ähnlichkeit zur bekannten „SEI“ („solid electrolyte interphase“), wie sie auf Anoden in konventionellen Lithium-Ionen-Batterien entsteht und diese überhaupt nutzbar macht. Die von den Autoren als „solid-/liquid electrolyte interphase“ – kurz „SLEI“ – bezeichnete Passivierungsschicht ist wegen ihres elektrischen Widerstands nachteilig und hätte einen erheblichen Einfluss auf die Leistungsfähigkeit einer hybriden Batterie.

Die von der Gießener Forschergruppe vorgestellten Ergebnisse sind Teil einer aktuellen Richtung der Batterieforschung: Durch den teilweisen oder vollständigen Ersatz flüssiger Elektrolyte durch feste Elektrolyte sollen Stabilitätsprobleme neuer Zelltypen gelöst werden oder auch reine Festkörperbatterien mit großer Haltbarkeit entwickelt werden.

Die Forschergruppe um Prof. Janek untersucht gemeinsam mit Partnern am Karlsruher Institut für Technologie (KIT) und der Industrie systematisch die bei der Umsetzung von Festelektrolyttechnologien auftretenden Probleme. Hierzu gehören Transportprozesse von (Lithium-)Ionen in Festkörpern und in besonderem Maße Transferprozesse an Grenzflächen.

Die Ergebnisse der publizierten Arbeit wurden im Rahmen des internationalen Forschungsnetzwerks der BASF SE für Elektrochemie und Batterien erarbeitet. In diesem Netzwerk erforschen weltweit acht Arbeitsgruppen in Deutschland, Israel, Kanada, der Schweiz und den USA gemeinsam mit der BASF SE neue Materialien und Zellkonzepte für leistungsfähige elektrochemische Energiespeicher. Prof. Dr. Philipp Adelhelm wurde mittlerweile auf die Professur für Kohlenstoffnanomaterialien an der Universität Jena berufen, Martin Busche ist seit Ende 2015 in der Batterieentwicklung der Robert Bosch GmbH tätig.

Veröffentlichung:
Martin R. Busche, Thomas Drossel, Thomas Leichtweiss, Dominik A. Weber, Mareike Falk, Meike Schneider, Maria-Louisa Reich, Heino Sommer, Philipp Adelhelm and Jürgen Janek:
Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts, Nature Chemistry, DOI: 10.1038/nchem.2470

Kontakt:
Prof. Dr. Jürgen Janek, Physikalisch-Chemisches Institut
Heinrich-Buff-Ring 17, 35392 Gießen
Telefon: 0641 99-34500

Weitere Informationen:

http://www.nature.com/nmat/index.html
http://www.uni-giessen.de/cms/fbz/fb08/Inst/physchem/janek

Lisa Dittrich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht CeMM Studie gibt Einblick in die Funktionsweise eines wichtigen Genregulators
02.06.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Neue Therapien im Kampf gegen Krebs: Jagd auf lebensbedrohliche Metastasen
02.06.2020 | Fraunhofer-Institut für Toxikologie und Experimentelle Medizin ITEM

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Messung verschärft altes Problem

Seit Jahrzehnten rätseln Astrophysiker über zwei markante Röntgen-Emissionslinien von hochgeladenem Eisen: ihr gemessenes Helligkeitsverhältnis stimmt nicht mit dem berechneten überein. Das beeinträchtigt die Bestimmung der Temperatur und Dichte von Plasmen. Neue sorgfältige, hoch-präzise Messungen und Berechnungen mit modernsten Methoden schließen nun alle bisher vorgeschlagenen Erklärungen für diese Diskrepanz aus und verschärfen damit das Problem.

Heiße astrophysikalische Plasmen erfüllen den intergalaktischen Raum und leuchten hell in Sternatmosphären, aktiven Galaxienkernen und Supernova-Überresten....

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

Eine Forschungskooperation der Universität Konstanz unter Federführung von Professor Dr. Christof Hauck (Fachbereich Biologie) mit Beteiligung des Klinikum Konstanz, eines Konstanzer Diagnostiklabors und des Konstanzer Unternehmens myPOLS Biotec, einer Ausgründung aus der Arbeitsgruppe für Organische Chemie / Zelluläre Chemie der Universität Konstanz, hat ein neuartiges Covid-19-Schnelltestverfahren entwickelt. Dieser Test ermöglicht es, Ergebnisse in der Hälfte der Zeit zu ermitteln – im Vergleich zur klassischen Polymerase-Ketten-Reaktion (PCR).

Die frühe Identifikation von Patienten, die mit dem neuartigen Coronavirus (SARS-CoV-2) infiziert sind, ist zentrale Voraussetzung bei der globalen Bewältigung...

Im Focus: Textilherstellung für Weltraumantennen startet in die Industrialisierungsphase

Im Rahmen des EU-Projekts LEA (Large European Antenna) hat das Fraunhofer-Anwendungszentrum für Textile Faserkeramiken TFK in Münchberg gemeinsam mit den Unternehmen HPS GmbH und Iprotex GmbH & Co. KG ein reflektierendes Metallnetz für Weltraumantennen entwickelt, das ab August 2020 in die Produktion gehen wird.

Beim Stichwort Raumfahrt werden zunächst Assoziationen zu Forschungen auf Mond und Mars sowie zur Beobachtung ferner Galaxien geweckt. Für unseren Alltag sind...

Im Focus: Biotechnologie: Enzym setzt durch Licht neuartige Reaktion in Gang

In lebenden Zellen treiben Enzyme biochemische Stoffwechselprozesse an. Auch in der Biotechnologie sind sie als Katalysatoren gefragt, um zum Beispiel chemische Produkte wie Arzneimittel herzustellen. Forscher haben nun ein Enzym identifiziert, das durch die Beleuchtung mit blauem Licht katalytisch aktiv wird und eine Reaktion in Gang setzt, die in der Enzymatik bisher unbekannt war. Die Studie ist in „Nature Communications“ erschienen.

Enzyme – in jeder lebenden Zelle sind sie die zentralen Antreiber für biochemische Stoffwechselprozesse und machen dort Reaktionen möglich. Genau diese...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Messung verschärft altes Problem

02.06.2020 | Physik Astronomie

CeMM Studie gibt Einblick in die Funktionsweise eines wichtigen Genregulators

02.06.2020 | Biowissenschaften Chemie

Neue Therapien im Kampf gegen Krebs: Jagd auf lebensbedrohliche Metastasen

02.06.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics