Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gen lässt Blau nach Banane duften: Taufliegen-Larven können Licht riechen

21.05.2010
Frontiers in Neuroscience Behavior: Bochumer Forscher beobachten neuronales Netz

Bochumer Wissenschaftlern ist es gelungen, Taufliegen-Larven genetisch so zu verändern, dass sie blaues Licht riechen können. Die Forscher können einzelne der 28 Riech-Nervenzellen der Larven für diese Wahrnehmung aktivieren. Für die Tiere, die Licht normalerweise meiden, riecht blaues Licht dann nach Banane, Marzipan oder Klebstoff – alles Duftstoffe, die in verfaulendem Obst verkommen und für Fliegenlarven attraktiv sind. Blaulicht finden sie dann entsprechend anziehend.

Die Bochumer und Göttinger Forscher um Prof. Dr. Klemens Störtkuhl versprechen sich davon Einsichten in die Verschaltung und die Funktionsweise des Gehirns. Sie berichten in der Internationalen Zeitschrift Frontiers in Neuroscience Behavior.

Licht riecht lecker

Die Riech-Nervenzellen der nur einen Millimeter kleinen genetisch veränderten Fliegenlarven sind alle in der Lage, das entsprechende Protein herzustellen, das durch Licht aktiviert wird. Welche der 28 Zellen schließlich licht-empfindlich wird, können die Forscher mit Hilfe von genetischen Markern frei wählen. „Wir konnten sowohl Zellen aktivieren, die normalerweise abstoßende Düfte wahrnehmen, was eine Schreckreaktion bei den Tieren auslöst, als auch solche, die attraktive Düfte wahrnehmen, wie Banane, Marzipan oder Klebstoff“, erklärt Prof. Störtkuhl. Die aktivierten Nervenzellen senden bei Bestrahlung mit blauem Licht der Wellenlänge 480nm ein elektrisches Signal – sie feuern. Die Larve hat so den Eindruck, Düfte wahrzunehmen. Das Experiment zeigt, dass sich Larven, bei denen Nerven-Zellen, die für attraktive Duftstoffe zuständig sind, lichtempfindlich gemacht wurden, auf das Licht zu bewegen, während genetisch unveränderte Larven Licht generell meiden.

Tiere werden nicht verletzt

Die Forscher können den Effekt außerdem elektrophysiologisch messen. Dünne Elektroden können das Signal der Licht-aktivierten Nervenzellen detektieren. So lässt sich die Verarbeitung des Nervensignals bis ins Gehirn weiterverfolgen und somit lassen sich neuronale Netze nicht-invasiv beobachten. „Der große Vorteil dieser Technik besteht darin, dass wir am lebenden Tier Tests durchführen können, ohne es zu verletzen“, sagt Prof. Störtkuhl. Die Forscher versprechen sich mit dieser neuen Technik weitere Einblicke in die Verschaltung und die Funktionsweise des Gehirns. Der Geruchssinn funktioniert bei den genetisch veränderten Fliegenlarven übrigens normal.

Gleiches Prinzip auch bei anderen Tieren

In weiteren Studien wollen die Forscher nach demselben Prinzip auch erwachsene Taufliegen mit den photoaktivierbaren Proteinen ausstatten, um in ihrem Gehirn einzelne Nervenzellen gezielt anregen zu können. Die hier erfolgreich eingesetzte Methode werden nun auch in anderen Laboren u.a. dann der RUB bei Mäusen etabliert werden, um ähnliche Fragestellungen beantworten zu können.

Titelaufnahme

Bellmann D, Richardt A, Freyberger R, Nuwal N, Schwärzel M, Fiala A and Störtkuhl KF (2010) Optogenetically induced olfactory stimulation in Drosophila larvae reveales the neuronal basis of odor-aversion behavior. Front. Behav. Neurosci. 4:27. doi:10.3389/fnbeh.2010.00027, http://frontiersin.org/neuroscience/behavioralneuroscience/paper/

10.3389/fnbeh.2010.00027/

Weitere Informationen

Prof. Dr. Klemens Störtkuhl, Lehrstuhl Zellphysiologie, AG Sinnesphysiologie, Fakultät für Biologie und Biotechnologie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-25838, E-Mail: klemens.stoertkuhl@rub.de

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Tuberkulose: Neue Einblicke in den Erreger
10.10.2019 | Julius-Maximilians-Universität Würzburg

nachricht Nanostrukturen helfen, die Haftung von Krankenhauskeimen zu reduzieren
10.10.2019 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

Aktuelle Trends an den Finanzmärkten im Schnelldurchlauf

09.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IZM setzt das E-Auto auf die Überholspur

11.10.2019 | Energie und Elektrotechnik

IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien

11.10.2019 | Messenachrichten

Kryptografie für das Auto der Zukunft

11.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics