Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gemeinsam Fließen statt einsam Hüpfen - Neutronen untermauern neue Theorie über Bewegung in der Zellmembran

22.02.2010
Moleküle in einer Zellmembran bewegen sich fließend im Verbund statt als Einzelgänger in frei werdende Leerstellen zu hüpfen.

Das haben Sebastian Busch und Dr. Tobias Unruh am Neutronenspektrometer TOFTOF (time-of-flight time-of-flight) an der Neutronenquelle der Technischen Universität München (TUM) mit Daten belegt. Ihre Messungen, die sie jetzt in der renommierten Fachzeitschrift "Journal of the American Chemical Society" veröffentlicht haben, klären ein jahrzehntelanges Rätsel und untermauern erstmals experimentell eine neue Theorie der Molekülbewegung.

Immer wieder sahen sich Sebastian Busch und der Betreuer seiner Doktorarbeit an der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der TUM, Tobias Unruh, eine Simulation der Molekülbewegungen in einem Film auf YouTube an: "Die hüpfen ja gar nicht!" Und genau das behaupten auch die finnischen Biophysiker um Ilpo Vattulainen, die die Zellmembran per Computer simuliert und die Simulation auf YouTube gestellt haben.

Biophysiker haben jahrelang an ein falsches Modell geglaubt: Statt sich hüpfend einzeln von Leerstelle zu Leerstelle vorwärts zu bewegen, fließen die Phospholipide der Membran im Verbund. Jahrzehntelang gab es einen Streit zwischen den Wissenschaftlern, die Zellmembranbewegungen unter dem Mikroskop im Mikrometermaßstab beobachteten und den Neutronenstreuern, die die Molekülbewegung im Nanometerbereich vermessen können. Unter dem Mikroskop sah es so aus, als ob sich die Phospholipide sehr langsam in der Zellmembran bewegten, mit Neutronen wurden Bewegungen gemessen, die 100 Mal so schnell waren. Diesen scheinbaren Widerspruch erklärte man schließlich mit der Theorie, dass sich die Moleküle in einem Käfig aus den benachbarten Molekülen eingeschlossen so lange schnell hin und her bewegen, bis sich ein freier Platz bietet, in den das Molekül hinein hüpfen kann. Weil derartige Sprünge relativ selten auftreten, sieht man im Mikrometermaßstab eine langsamere Bewegung, so die Theorie.

"Nie hat jemand diese Theorie des Hüpfens mit Messungen belegen können", sagt der Chemiker Tobias Unruh. Auch Sebastian Busch wusste nicht, wie er seine Messungen an einer Phospholipidmembran am Neutronenspektrometer TOFTOF interpretieren sollte. Die Daten passten einfach nicht zum Modell. Da sah er die Simulation der finnischen Biophysiker, und informierte sich genauer vor Ort an der Universität in Helsinki. Der 27-Jährige, der am Lehrstuhl von Professor Dr. Winfried Petry im Physik-Department der TUM promoviert, reizte daraufhin bei ergänzenden Messungen die Leistungsfähigkeit des Spektrometers in Garching voll aus. "Da ist mir klar geworden, dass ich die Theorie der Finnen mit Daten untermauern kann", sagt Sebastian Busch. Schließlich konnte er die fließende Bewegung der Moleküle mit seinen Experimenten belegen. Die Zellmembranmoleküle bewegen sich dabei ähnlich wie Personen in einer Menschenmasse: Nur wenn mehrere im Verbund in eine Richtung drängen, kommt auch das Individuum vorwärts. Ein einsames Hüpfen der Moleküle gibt es also nicht, nur ein gemeinsames Fließen.

Als Probe untersuchte der Physiker ein typisches Phospholipid, Dimyristoylphosphatidylcholin (DMPC), hydriert mit schwerem Wasser. Die Bewegung der Zellmembran wurde in Zeitabständen von 35 bis 1000 Billionstel Sekunden bei 30 °C beobachtet. Im Spektrometer TOFTOF werden Neutronen mit einer genauestens bekannten Geschwindigkeit ausgewählt. Sie treffen auf die Probe und interagieren mit den Atomkernen. Wenn diese in Bewegung sind, ändern die Neutronen ihre Geschwindigkeit, was in einem Detektor gemessen wird. "Wir haben hier weltweit das einzige Spektrometer, das mit einer so großen Genauigkeit diese kleinen Bewegungen auf der Nanoskala messen kann", sagt Tobias Unruh.

Nun werden Tobias Unruh und Sebastian Busch untersuchen, wie sich die Bewegungen der Phospholipide verändern, wenn sie verschiedene Stoffe beimengen. Solche Mischungen werden in Arzneimitteln verwendet. Geeignete Zusätze können die Haltbarkeit der Stoffe drastisch erhöhen. Die TUM-Wissenschaftler interessiert vor allem, welchen Einfluss die Molekülbewegungen auf diesen stabilisierenden Effekt haben. "Wenn wir den Stabilisierungsmechanismus im Detail verstehen", hofft Tobias Unruh, "können zukünftig für die jeweilige Anwendung optimierte Mischungen vorgeschlagen werden."

Originalpublikation:
Molecular Mechanism of Long-Range Diffusion in Phospholipid Membranes Studied by Quasielastic Neutron Scattering, S. Busch, C. Smuda, L.C. Pardo Soto, T. Unruh
Journal of the American Chemical Society, Publication Date (Web): February 17, 2010

DOI: 10.1021/ja907581s - Link: http://pubs.acs.org/doi/abs/10.1021/ja907581s

Kontakt:
Dr. Tobias Unruh
Technische Universität München
Forschungs-Neutronenquelle
Heinz Maier-Leibnitz (FRM II)
Lichtenbergstr. 1, 85748 Garching
Tel: +49 89 289 14735
E-Mail: tobias.unruh@frm2.tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.frm2.tum.de/wissenschaft/spektrometer/toftof/index.html
http://pubs.acs.org/doi/abs/10.1021/ja907581s
http://www.youtube.com/watch?v=Gzg357buRh8

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Schweiss auf Knopfdruck beseitigen
19.11.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Gen-Radiergummi: Neuer Behandlungsansatz bei chronischen Erkrankungen
19.11.2018 | Universitätsmedizin Göttingen - Georg-August-Universität

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungsnachrichten

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungsnachrichten

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics