Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gehirnmodelle „Made in Austria“ sind dem Original erstaunlich ähnlich

21.12.2016

Ein internationales Team von Forscherinnen und Forschern verglich künstlich gezüchtete Gehirn-Organoide mit der Originalvorlage im menschlichen Körper und fand auffällige Ähnlichkeiten in Form, Struktur und Entwicklung. Dies berichtet das Fachmagazin Cell Reports in seiner aktuellen Ausgabe.

Bereits 2013 überraschten Wissenschaftlerinnen und Wissenschaftler des IMBA – Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften, die Fachwelt, indem sie als Erste aus Stammzellen dreidimensionale kleine, gehirnartige Strukturen in der Petrischale wachsen ließen. Die Gehirnmodelle aus Wien waren eine wissenschaftliche Sensation. Die Methode wurde seitdem weltweit von vielen Forschungslabors übernommen, um die Entwicklung des Gehirns und die Entstehung verschiedener neurodegenerativer Erkrankungen zu studieren.


Fluoreszierender Querschnitt eines Gehirn-Organoids.

Image credit: Madeline Lancaster/MRC-LMB (Medical Research Council, Laboratory of Molecular Biology), UK

Ein Team internationaler Forscherinnen und Forscher konnte nun nachweisen, dass die in Wien erfundenen 3D-Gehirnmodelle echten Gehirnen nicht nur in Struktur und Funktion ähneln, sondern tatsächlich auch in ihren epigenetischen Merkmalen.

Forschungsmission: Erkrankungen des menschlichen Gehirnes verstehen
„Mit den Gehirn-Organoiden simulieren wir das Frühstadium des menschlichen Gehirns und können die embryonale Entwicklung live beobachten,“ erklärt Jürgen Knoblich, stellvertretender wissenschaftlicher Direktor am IMBA. „Unsere Methode gibt uns nicht nur enormen Aufschluss über den Aufbau und die Entwicklung dieses wichtigsten Organs unseres Körpers. Anhand der Organoide lassen sich auch Erkrankungen wie Alzheimer, Parkinson oder Schizophrenie erstmals im menschlichen Gewebe erforschen, um in einem nächsten Schritt neue Therapiemöglichkeiten zu finden.“
Das menschliche Gehirn unterscheidet sich wesentlich von den Gehirnen anderer Säugetiere, wie zum Beispiel Mäusen. „Diese Unterschiede machten es bisher schwierig, die Entstehung komplexer neurologischer Krankheiten zu verstehen. Jetzt haben wir ein unglaublich mächtiges Werkzeug dafür. Wichtig ist auch, dass nun Medikamente direkt an menschlichem Gewebe getestet werden können“, zeigt sich Knoblich begeistert über das enorme Potenzial.

In seinem Wiener Labor am IMBA legte er gemeinsam mit seiner damaligen Postdoktorandin Madeline Lancaster bereits vor Jahren den Grundstein für die Gehirnmodelle aus der Petrischale: Embryonale Stammzellen werden durch spezielle Zellkulturverfahren dazu gebracht, die einzelnen Schritte der embryonalen Gehirnentwicklung im Labor nachzuahmen und sich zu Nervenzellen zu spezialisieren. In wenigen Monaten bildet sich so ein etwa erbsengroßer Gewebeverband, der dem Stadium eines embryonalen Gehirns entspricht.

Erstmals epigenetischer Vergleich mit dem Original
In der aktuellen Studie untersuchten die Forscherinnen und Forscher erstmals auch die „epigenetischen“ Merkmale der Organoide. Das sind kleine Molekülgruppen, die bestimmen, welche Abschnitte auf der DNA abgelesen werden und welche auf stumm geschaltet werden. Dieses sogenannte Epigenom wirkt eine Ebene über dem Genom und kann durch umweltbedingte Faktoren, wie Stress oder Ernährung, beeinflusst werden. Gerade bei der Ausprägung von neurologischen Erkrankungen wie etwa Schizophrenie scheinen epigenetische Faktoren eine wichtige Rolle zu spielen.

„Gehirn-Organoide unterscheiden sich hinsichtlich ihrer epigenetischen Merkmale von echten Gehirnen, da sie in einer vollkommen anderen Umgebung heranwachsen, doch erstaunlicherweise gibt es ähnliche Muster“, erklärt der Letztautor der Publikation, Joseph Ecker, der am US Salk Institut in Kalifornien forscht. „In Zukunft könnte man daher versuchen, die epigenetischen Merkmale des Gehirnes auch auf das Modell zu übertragen. Dies könnte uns helfen, die komplexe Funktion des menschlichen Gehirnes noch besser zu simulieren, um die Ausprägung von Krankheiten noch besser verstehen zu können.“

Originalpublikation:
Cerebral organoids recapitulate epigenomic signatures of human fetal brain. Chongyuan Luo, Madeline A. Lancaster, Rosa Castanon, Joseph R. Nery, Juergen A. Knoblich, and Joseph R. Ecker. Cell Reports
doi.org/10.1016/j.celrep.2016.12.001

Weitere Informationen:

Pressefoto: http://de.imba.oeaw.ac.at/index.php?id=516

Mag. Ines Méhu-Blantar | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Infrarotsensor als neue Methode für die Wirkstoffentwicklung
19.07.2018 | Ruhr-Universität Bochum

nachricht Neues aus der Schaltzentrale
18.07.2018 | Karl-Franzens-Universität Graz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Automatisiertes Befüllen von Regalen im Einzelhandel

19.07.2018 | Verkehr Logistik

Mobilfunkstrahlung kann die Gedächtnisleistung bei Jugendlichen beeinträchtigen

19.07.2018 | Studien Analysen

Mit dem Nano-U-Boot gezielt gegen Kopfschmerzen und Tumore

19.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics