Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gefräßige Immunzellen: Bayreuther Physiker erforschen Transportwege von Krankheitserregern

07.12.2017

Wenn Bakterien, Viren oder andere Partikel in den Organismus von Menschen oder Tieren gelangen, ist das Immunsystem in der Regel imstande, diese Krankheitserreger unschädlich zu machen. Eine wichtige Aufgabe hat dabei ein bestimmter Typ von Immunzellen: Makrophagen sind „Fresszellen“, die sich die Fremdkörper einverleiben und sie so zerkleinern, dass sie für den Organismus keine Gefahr mehr darstellen. Physiker an der Universität Bayreuth um Prof. Dr. Holger Kreß stellen jetzt in "Scientific Reports" neue Erkenntnisse über diese Prozesse vor. Es hat sich herausgestellt, dass es wesentlich von der Größe der Partikel abhängt, wie die Immunzelle mit ihnen verfährt.

Auf die Größe kommt es an: Wie Fresszellen auf Eindringlinge reagieren


Dipl.-Phys. Steve Keller und Prof. Dr. Holger Kreß (v.l.) bei der Vorbereitung eines Experiments an einem Mikroskop mit einer holographischen optischen Pinzette.

Foto: Christian Wißler

Für ihre Untersuchungen an Zelllinien von Mäusen haben die Bayreuther Forscher als Partikel winzige Kunststoffkügelchen verwendet. An deren Oberflächen wurden in der Natur häufig vorkommende Antikörper, das Immunoglobulin G (IgG), platziert. So war gewährleistet, dass die Makrophagen auf diese Fremdpartikel so reagierten, als ob es sich tatsächlich um gefährliche Bakterien handeln würde.

Partikel mit einem Durchmesser von rund drei Mikrometern sind vergleichsweise groß. Sobald sie ins Innere der Immunzelle gelangt sind, werden sie zügig in Richtung Zellkern transportiert. Hier werden sie im lebenden Organismus in der Regel schneller verdaut als im Randbereich der Zelle. Bei mittelgroßen Partikeln verläuft dieser Prozess schon schleppender.

Kleine Partikel mit einem Durchmesser von rund einem Mikrometer zeigen wiederum eine auffällige ‚Unentschiedenheit‘: Wenn sie schließlich in der Nähe des Zellkerns angekommen sind, treten sie oft wieder den Rückweg zum Randbereich der Zelle an. „Möglicherweise unterstützt dieser Prozess die Entsorgung von Verdauungsresten, die aus der Zelle wieder herausgeschleust werden“, meint Prof. Kreß.

Angesichts dieser größenabhängigen Unterschiede haben die Wissenschaftler untersucht, welche Bestandteile der Immunzelle die gegenläufigen Transportbewegungen in Gang setzen und fördern. „Wenn große Partikel zum Zellkern wandern, übernimmt ein bestimmtes Protein – das Dynein – eine zentrale Aufgabe, es ist ein wichtiger Motor für diese Transportbewegung.

Hingegen sind winzige Fasern, die aus dem Protein Aktin bestehen, maßgeblich an dem sehr unregelmäßigen Transport kleinerer Partikel beteiligt“, erläutert Dipl.-Phys. Steve Keller, Doktorand und Erstautor der neuen Studie.

Wertvolle Anhaltspunkte für die Verkapselung medizinischer Wirkstoffe

Das primäre Ziel der Untersuchungen war es, mit physikalischen Methoden ein tieferes Verständnis der Vorgänge zu gewinnen, die dafür sorgen, dass mit Antikörpern bestückte Krankheitserreger von der Immunzelle zerstört werden. Doch zeichnen sich schon jetzt mögliche Anwendungen ab. „Drug delivery“ heißt ein in der Medizin immer häufiger genutztes Verfahren, bei dem Wirkstoffe in Kapseln eingeschlossen und innerhalb des Organismus genau dorthin transportiert werden, wo sie freigesetzt werden und wirken sollen.

Dass es offenbar wesentlich von der Größe von Partikeln abhängt, wie Immunzellen mit ihnen umgehen, könnte aus Sicht der Bayreuther Forscher ein interessanter Anhaltspunkt für das optimale Design von Wirkstoff-Kapseln sein.

Optische und magnetische Pinzetten im Einsatz

Die in Scientific Reports vorgestellten Erkenntnisse wären nicht möglich gewesen ohne die Kombination verschiedener biophysikalischer Techniken. So haben die Forscher beispielsweise eine „holographische optische Pinzette“ verwendet, um die mit Antikörpern bestückten Partikel zu festzuhalten und so dicht an die Immunzellen heranzuführen, dass sie als vermeintliche Krankheitserreger identifiziert und einverleibt werden.

Bei dieser Technik kommen ein optisches Mikroskop in Verbindung mit Laserstrahlen zum Einsatz: Allein durch die Wirkung von Lichtstrahlen lassen sich ausgewählte Partikel einfangen und präzise an einen gewünschten Ort bewegen. Mit einer „magnetischen Pinzette“ wiederum ist es den Wissenschaftlern gelungen, Transportbewegungen innerhalb der Zelle zielgerichtet zu stören und Aufschluss darüber zu gewinnen, welche Proteine in welcher Weise an diesen Prozessen beteiligt sind.

Mikroskopische Aufnahmen zum Download:

https://www.uni-bayreuth.de/de/universitaet/presse/pressemitteilungen/2017/148-I...

Veröffentlichung:

Steve Keller, Konrad Berghoff and Holger Kreß, Phagosomal transport depends strongly on phagosome size, Scientific Reports 7, Article number: 17068 (2017),
DOI: 10.1038/s41598-017-17183-7.

Kontakt:

Prof. Dr. Holger Kreß
Arbeitsgruppe Biologische Physik
Physikalisches Institut
Universität Bayreuth
Universitätsstr. 30
95448 Bayreuth
Telefon: +49 (0)921 / 55-2505
E-Mail: holger.kress@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Infrarotsensor als neue Methode für die Wirkstoffentwicklung
19.07.2018 | Ruhr-Universität Bochum

nachricht Neues aus der Schaltzentrale
18.07.2018 | Karl-Franzens-Universität Graz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Automatisiertes Befüllen von Regalen im Einzelhandel

19.07.2018 | Verkehr Logistik

Mobilfunkstrahlung kann die Gedächtnisleistung bei Jugendlichen beeinträchtigen

19.07.2018 | Studien Analysen

Mit dem Nano-U-Boot gezielt gegen Kopfschmerzen und Tumore

19.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics