Für ein sicheres, sauberes Nass – Magnetische Nanopartikel mit ionischen Flüssigkeiten für die Wasseraufbereitung

Nanopartikel, die mit einer "ionischen Flüssigkeit" beschichtet sind, binden Kontaminationen wie Schwermetalle im Trinkwasser. Beladene Partikel lassen sich mit einem Magneten entfernen. (c) Wiley-VCH

Für ihren alternativen Ansatz verwenden die Forscher von der Universität Ulm, dem Helmholtz-Institut Ulm und der CISC-Universidad de Zaragoza (Spanien) um Carsten Streb, Robert Güttel und Scott G. Mitchell Nanopartikel mit einem Kern aus magnetischem Eisenoxid und einer Schale aus porösem Siliziumdioxid.

Auf ihrer Oberfläche wird eine Schicht einer sogenannten ionischen Flüssigkeit fest aufgebracht. Eine ionische Flüssigkeit ist ein Salz, das bereits bei Raumtemperatur geschmolzen vorliegt, also flüssig ist, ohne in einem Lösungsmittel gelöst zu sein.

Die verwendete ionische Flüssigkeit basiert auf Polyoxometallaten (POM) – Metallatomen, die über Sauerstoffatome zu einem dreidimensionalen Netzwerk verbrückt sind. Als Metall wählten die Forscher Wolfram, denn die entstehenden Polyoxowolframat-Anionen können Schwermetallionen binden. Als Gegenionen dienen voluminöse Tetraalkylammonium-Kationen mit antimikrobiellen Eigenschaften.

Die entstehenden ionischen Flüssigkeiten bilden stabile dünne Schichten („geträgerte ionische Flüssigphasen“) auf dem porösen Siliziumdioxid-Mantel der Nanopartikel. Die mit Kontaminationen beladenen Nanopartikel lassen sich dann auf einfache Weise durch einen Magneten aus dem Wasser entfernen.

Bei Labortests entfernten die Nanopartikel zuverlässig Blei-, Nickel-, Kupfer-, Chrom- und Kobaltionen sowie den Farbstoff Patentblau V als Modellsubstanz für aromatische Verunreinigungen.

Ebenso wurde das Wachstum verschiedener Bakterienarten effektiv gestoppt. Die Nanopartikel lagerten sich zudem an die Oberfläche von 1 µm bzw. 10 µm großen Polystyrolkügelchen – ein Modell für Mikroplastik – an, die sich auf diese Weise quantitativ entfernen ließen.

Durch ein weiteres Justieren der einzelnen Bestandteile könnte das Verbundmaterial weiter optimiert werden und die magnetischen Nanopartikel zu einem vielversprechenden Ausgangspunkt für zentrale und dezentrale Wasseraufbereitungssysteme machen. So würde eine einfache Reinigung größerer Wassermengen auch ohne umfangreiche Infrastruktur möglich.

Angewandte Chemie: Presseinfo 30/2019

Autor: Carsten Streb, Universität Ulm (Germany), http://www.strebgroup.net/

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany

https://doi.org/10.1002/ange.201912111

https://presse.angewandte.de

Media Contact

Dr. Karin J. Schmitz Gesellschaft Deutscher Chemiker e.V.

Weitere Informationen:

https://www.gdch.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer