Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fünfhundert Gene dirigieren den Takt des Herzens

02.04.2010
Wiener Forscher erstellen erste vollständige Genkarte der Herzfunktion

Ein internationales Forscherteam um IMBA-Direktor Josef Penninger identifizierte sämtliche Gene, die an der Regulation der Herzfunktion beteiligt sind. Dieses Wissen ist eine wesentliche Voraussetzung für die Entwicklung dringend benötigter Herzmedikamente. Die aktuelle Ausgabe des Journals Cell widmet den neuen Erkenntnissen eine Titelgeschichte.

Pro Jahr sterben rund 15 000 Österreicher am plötzlichen Herztod. Ohne spürbare vorangegangene Warnzeichen hört ihr Herz auf zu schlagen, nicht selten trifft es scheinbar gesunde, junge Menschen. Ursache ist immer eine Vorerkrankung des Herzens, die aber nicht immer bemerkt wird. Dazu kommt als Auslöser eine Stresssituation - zum Beispiel sportliche Betätigung - die zu einer Rhythmusstörung führt.

Mediziner suchen seit langem nach erkennbaren Risikofaktoren, die Menschen für solche tödlichen Rhythmusstörungen anfällig machen. In jüngster Zeit konnten Molekularbiologen wertvolle Hinweise liefern: immer wieder fanden sie Gene, die wesentlich an der Herzfunktion beteiligt sind und bei Erkrankungen eine Rolle spielen.

Eine Landkarte der Herzfunktion

Josef Penninger und sein Postdoktorand Greg Neely am Institut für Molekulare Biotechnologie der Akademie der Wissenschaften (IMBA) gingen die Suche systematisch an. Gemeinsam mit Forschern aus den USA, Kanada, Japan, Indien, Italien und Deutschland erarbeiteten sie eine "Landkarte" aller an der Herzfunktion beteiligten Gene und ihrer Wechselwirkungen. Die Karte, die an das Streckennetz einer Fluggesellschaft erinnert, ist ein Datenschatz für Herzspezialisten. "Die Information, die uns nun zur Verfügung steht, wird in zahlreiche weitere Forschungsprojekte einfließen und gibt uns Hinweise, wo wir in Zukunft mit Medikamenten ansetzen könnten", meint Neely. Die riesige Rechnerleistung, die zu ihrer Erstellung nötig war, lieferte ein Bioinformatik-Team in Bangalore.

Um an die Gene heranzukommen, bedienten sich die Forscher der hauseigenen Taufliegen-Sammlung VDRC (Vienna Drosophila Research Center). Gemeinsam mit dem kalifornischen Fliegen-Herzspezialisten Rolf Bodmer (Sanford-Burnham Medical Research Institute, La Jolla) konnten sie 500 Gene identifizieren, die für das einwandfreie Funktionieren des Fliegenherzens notwendig sind. Wird eines dieser Gene blockiert, so droht dem Tier bei Stress ein schneller Herztod.

Von den gefundenen Herz-Genen war bisher nur etwa ein Drittel bekannt. Eines der neu identifizierten Gene, NOT-3, wurde von den Forschern genauer unter die Lupe genommen. Blockiert man es, so entwickeln die Fliegen schwere Herzrhythmusstörungen und erweiterte Herzkammern. Beim Menschen ist dieses Krankheitsbild als "dilatative Kardiomyopathie" bekannt und kann in seltenen Fällen vererbt werden.

Von Fliegen über Mäuse zum Menschen

Josef Penningers früherer Mitarbeiter Keiji Kuba (Akita University, Japan) konnte die an Fliegen gewonnenen Erkenntnisse auch für Wirbeltiere bestätigen. Blockiert man NOT-3 bei Mäusen, so kommt es ebenfalls zu krankhaften Veränderungen des Herzens und zu Herzstillstand bei Stress.

Die eindeutigen Versuchsergebnisse führten die Forscher bald zu der Frage, ob ein ähnlicher Mechanismus auch beim Menschen wirksam ist. Gemeinsam mit Andrew Hicks und Peter P. Pramstaller vom EURAC-Institut für Genetische Medizin in Bozen, Italien, und Arne Pfeufer vom Institut für Humangenetik am Helmholtz Zentrum in München, alle Teil des QTSCD Konsortiums (QT Interval and Sudden Cardiac Death), gelang der Beweis: Veränderungen in der NOT3-Region korrelieren auch beim Menschen mit einer erhöhten Anfälligkeit für Herzprobleme. Patienten mit dieser Veranlagung weisen im EKG ein verlängertes QT-Intervall auf. Sie spüren davon nichts, doch bei körperlicher Belastung kann es zu tödlichen Arrhythmien kommen.

Obwohl der Kreislauf bei Fliegen anders funktioniert als beim Menschen sind die Gene, die die Herzfunktion steuern, im Lauf der Evolution also kaum verändert worden. Als Studienobjekte sind Fliegen nahezu unschlagbar. "Unsere Arbeit mit Drosophila hat gezeigt, dass wir auf diese Weise krankheitsrelevante Gene finden können, die wir bei der Untersuchung an Menschen niemals entdeckt hätten", so Josef Penninger.

Hunderte Kandidaten-Gene warten nun darauf, auf ihre Beteiligung an Herzerkrankungen überprüft zu werden. In diese Arbeit wird noch viel Forscher-Herzblut fließen.

Die Arbeit "A global in vivo Drosophila RNAi screen identifies NOT3 as a conserved regulator of heart function" von G. Gregory Neely et al. wird am 2. April 2010 in Cell publiziert.

Kontakt
Mag. Evelyn Missbach MAS
IMP-IMBA Communications
Tel: +43 1 79730 3626
evelyn.missbach@imba.oeaw.ac.at
Wissenschaftlicher Kontakt:
Prof. Josef Penninger
josef.penninger@imba.oeaw.ac.at
Penninger-Labor:
http://www.imba.oeaw.ac.at/research/josef-penninger/
Illustrationen und ein Video finden Sie im Internet unter der Adresse:
http://www.imba.oeaw.ac.at/pressefoto-herzgene

Dr. Heidemarie Hurtl | idw
Weitere Informationen:
http://www.imba.oeaw.ac.at/pressefoto-herzgene
http://www.imba.oeaw.ac.at/research/josef-penninger

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Biomarker besser nachweisen: Bremer Forscher entwickeln neue Methode mit Mikrokapseln
14.08.2018 | Jacobs University Bremen gGmbH

nachricht Grönland: Tiefe des Schmelzwassereintrags beeinflusst Planktonblüte
14.08.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Helfer bei der Zellreinigung

14.08.2018 | Biowissenschaften Chemie

Neue Oberflächeneigenschaften für holzbasierte Werkstoffe

14.08.2018 | Materialwissenschaften

Fraunhofer IPT unterstützt Zweitplatzierten bei SpaceX-Wettbewerb

14.08.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics