Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fruchtfliegen riechen indirekt Antioxidantien

27.01.2015

Antioxidantien sind natürliche Nahrungsinhaltsstoffe, die Körperzellen vor gefährlichen Einflüssen schützen. Ihre Aufgabe ist es insbesondere, sogenannte freie Radikale zu neutralisieren, die meist durch Oxidation entstehen und für die Degeneration von Zellen verantwortlich gemacht werden. 

Wissenschaftler des Max-Planck-Instituts für chemische Ökologie in Jena und der Universität Lund in Schweden konnten zeigen, dass Essigfliegen die Anwesenheit dieser Schutzstoffe riechen und aufspüren können. Düfte, die durch den mikrobiellen Abbau dieser Nahrungsinhaltstoffe entstehen, locken die Fliegen an, steigern ihren Appetit und lösen bei den Weibchen die Eiablage aus.


Essigfliegen (Drosophila melanogaster) auf einer überreifen Kirsche

Anna Schroll


Hany Dweck stimuliert die Riechsinneszellen von Fruchfliegen mit Düften und zeichnet die Reaktionen einzelner Geruchssensillen auf den Antennen der Insekten auf.

Anna Schroll

Hydroxyzimtsäuren sind sekundäre Pflanzenstoffe und gehören zu den wichtigsten natürlichen Antioxidantien in der Nahrung. Für Tiere, aber auch für uns Menschen sind Antioxidantien unverzichtbare Nahrungsbestandteile, denn sie schützen die Zellen und stärken das Immunsystem.

Sie verhindern insbesondere die Entstehung zu vieler freier Radikaler, zumeist Sauerstoffverbindungen, und somit eine Stoffwechsellage, die allgemein als oxidativer Stress bezeichnet wird. Leidet ein Organismus unter oxidativem Stress, können freie Radikale seine Zellen angreifen und die Krankheitsanfälligkeit erhöhen. In Fruchtfliegen entsteht oxidativer Stress beispielsweise, wenn das Insekt auf Giftstoffe durch schädliche Mikroorganismen in der Nahrung reagieren muss.

Hydroxyzimtsäuren sind vor allem in Früchten zu finden. Da Früchte der bevorzugte Ort für die Eiablage von Fruchtfliegen sind, haben Wissenschaftler der Abteilung Evolutionäre Neuroethologie am Max-Planck-Institut für chemische Ökologie in Jena diese Substanzen und ihre mögliche Wirkung auf die Fliegen genauer unter die Lupe genommen.

Fruchtfliegen können Hydroxyzimtsäuren nicht direkt riechen. Durch die Aktivität von Hefen werden die Antioxidantien allerdings verstoffwechselt und es entstehen Ethylphenole. Diese flüchtigen Substanzen aktivieren gezielt Geruchsneurone, die sich auf Mundwerkzeugen der Fruchtfliegen, den sogenannten Maxillen, befinden und den Geruchsrezeptor Or71a produzieren.

Fliegenlarven, die ebenfalls von Hydroxyzimtsäuren enthaltenden Hefen angelockt werden und die dafür Ethylphenole als duftende Hinweise nutzen, besitzen dagegen einen anderen Geruchsrezeptor, der die Ethylphenole bindet: Or94b, ein Rezeptor, der ausschließlich in Larven anzutreffen ist und zusammen mit Or94a aktiviert wird, der einen gewöhnlichen Hefeduft bindet. Obwohl die Fliegen Antioxidantien nicht direkt riechen können, sind Ethylphenole verlässliche Hinweise auf die Anwesenheit auf diese schützenden Stoffe in der Nahrung.

Die Wahrnehmung dieser Duftsignale wirkt sich direkt auf das Verhalten der Fliegen aus: Sie werden von den Duftquellen angelockt, nehmen vermehrt Nahrung auf und legen dort ihre Eier dort ab, wo Ethylphenole die Anwesenheit gesunder Antioxidantien anzeigen.

„Diese Form von stellvertretender Duftwahrnehmung ist kein Phänomen, das ausschließlich bei Insekten anzutreffen ist. Auch bei Menschen sind Düfte, die als angenehm oder lecker wahrgenommen werden, in der Tat wertvolle Hinweise auf gesunde oder gar lebensnotwendige Nahrungsinhaltstoffe, wie zum Beispiel essenzielle Aminosäuren, Fettsäuren und Vitamine“, erläutert Marcus Stensmyr, der die Untersuchungen in der Abteilung Evolutionäre Neuroethologie geleitet hat und jetzt an der Universität Lund forscht.

Die Ergebnisse sind ein weiteres Beispiel für einzelne Nervenleitungen, die vom Duftsignal über die Geruchsneurone und spezialisierte Rezeptoren einen grundlegenden Effekt auf das Verhalten der Fliegen haben (siehe auch unsere Pressemitteilung vom 7. Dezember 2012 „Direktschaltung im Fruchtfliegenhirn: STOPP, diese Nahrung ist verdorben − Duftstoff Geosmin von toxischen Mikroorganismen löst unbedingten Fluchtreflex aus“: http://www.ice.mpg.de/ext/971.html?&L=1).

Die Nervenschaltung für Ethylphenole als Stellvertreter für wichtige Antioxidantien in der Nahrung zeigt eine weitere Facette des komplexen geruchsgesteuerten Verhaltens von Fruchtfliegen. Die Wissenschaftler werden jetzt versuchen, weitere solche Riechbahnen zu identifizieren, die an der Aufspürung wichtiger Nahrungsbestandteile beteiligt sind und letztendlich Verhalten auslösen. [AO]

Originalveröffentlichung:
Dweck, H., Ebrahim, S. A. M., Farhan, A., Hansson, B. S., Stensmyr, M. C. (2015). Olfactory proxy detection of dietary antioxidants in Drosophila. Current Biology, DOI: 10.1016/j.cub.2014.11.062
http://dx.doi.org/10.1016/j.cub.2014.11.062

Weitere Informationen:
Prof. Dr. Bill S. Hansson, Max-Planck-Institut für chemische Ökologie, hansson@ice.mpg.de
Dr. Marcus C. Stensmyr, Department of Biology, Lund University, marcus.stensmyr@biol.lu.se

Kontakt und Bildanfragen:
Angela Overmeyer M.A., Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download von hochaufgelösten Fotos über http://www.ice.mpg.de/ext/735.html

Weitere Informationen:

http://www.ice.mpg.de/ext/1183.html?&L=1

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entstanden Nervenzellen, um mit Mikroben zu sprechen?
10.07.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Forscher der Universität Bayreuth entdecken außergewöhnliche Regeneration von Nervenzellen
09.07.2020 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics